Synergistic Extraction of Zn2+ from Aqueous Buffer Medium of Chloride Ions into 1- Phenyl -3- Methyl -4- Trichloro Acetyl Pyrazolone - 5 in Benzene and Hexane

2010 ◽  
Vol 3 (2) ◽  
pp. 146-150
Author(s):  
Chukwu John ◽  
Uzoukwu Augustus
2018 ◽  
Vol 47 (19) ◽  
pp. 6819-6830 ◽  
Author(s):  
Sanghamitra Sinha ◽  
Bijit Chowdhury ◽  
Nayarassery N. Adarsh ◽  
Pradyut Ghosh

“OFF–ON–OFF” luminescence switching behavior of a hexa-quinoline based sensor towards Zn2+and PPi in an aqueous buffer medium is demonstrated.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3016
Author(s):  
Carmen Aranda ◽  
Gonzalo de Gonzalo

The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.


Author(s):  
Al W. Stinson

The stratified squamous epithelium which lines the ruminal compartment of the bovine stomach performs at least three important functions. (1) The upper keratinized layer forms a protective shield against the rough, fibrous, constantly moving ingesta. (2) It is an organ of absorption since a number of substances are absorbed directly through the epithelium. These include short chain fatty acids, potassium, sodium and chloride ions, water, and many others. (3) The cells of the deeper layers metabolize butyric acid and to a lesser extent propionic and acetic acids which are the fermentation products of rumen digestion. Because of the functional characteristics, this epithelium is important in the digestive process of ruminant species which convert large quantities of rough, fibrous feed into energy.Tissue used in this study was obtained by biopsy through a rumen fistula from clinically healthy, yearling holstein steers. The animals had been fed a typical diet of hay and grain and the ruminal papillae were fully developed. The tissue was immediately immersed in 1% osmium tetroxide buffered to a pH of 7.4 and fixed for 2 hrs. The tissue blocks were embedded in Vestapol-W, sectioned with a Porter-Blum microtome with glass knives and stained with lead hydroxide. The sections were studied with an RCA EMU 3F electron microscope.


1984 ◽  
Vol 52 (03) ◽  
pp. 347-349 ◽  
Author(s):  
Daan W Traas ◽  
Bep Hoegee-de Nobel ◽  
Willem Nieuwenhuizen

SummaryNative human plasminogen, the proenzyme of plasmin (E. C. 3.4.21.7) occurs in blood in two well defined forms, affinity forms I and II. In this paper, the feasibility of separating these forms of human native plasminogen by affinity chromatography, is shown to be dependent on two factors: 1) the ionic composition of the buffer containing the displacing agent: buffers of varying contents of sodium, Tris, phosphate and chloride ions were compared, and 2) the type of adsorbent. Two adsorbents were compared: Sepharose-lysine and Sepharose-bisoxirane-lysine. Only in the phosphate containing buffers, irrespective of the type of adsorbent, the affinity forms can be separated. The influence of the adsorbent can be accounted for by a large difference in dissociation constants of the complex between plasminogen and the immobilized lysine.


2020 ◽  
Vol 61 (9) ◽  
pp. 1775-1781
Author(s):  
Li-Bin Niu ◽  
Shoichi Kosaka ◽  
Masaki Yoshida ◽  
Yusuke Suetake ◽  
Kazuo Marugame

Sign in / Sign up

Export Citation Format

Share Document