Novel Study of Model-Based Clustering Time Series Gene Expression in Different Tissues: Applications to Aging Process

2020 ◽  
Vol 13 (2) ◽  
pp. 178-187
Author(s):  
Farzane Ahmadi ◽  
Ali-Reza Abadi ◽  
Zahra Bazi ◽  
Abolfazl Movafagh

Background: Aging is an organized biological process that is regulated by highly interconnected pathways between different cells and tissues in the living organism. Identification of similar genes between tissues in different ages may also help to discover the general mechanism of aging or to discover more effective therapeutic decisions. Objective: Objective: According to the wide application of model-based clustering techniques, the aim is to evaluate the performance of the Mixture of Multivariate Normal Distributions (MMNDs) as a valid method for clustering time series gene expression data with the Mixture of Matrix-Variate Normal Distributions (MMVNDs). Methods: In this study, the expression of aging data from NCBI’s Gene Expression Omnibus was elaborated to utilize proper data. A set of common genes which were differentially expressed between different tissues were selected and then clustered together through two methods. Finally, the biological significance of clusters was evaluated, using their ability to find genes in the cell using Enricher. Results: The MMVNDs is more efficient to find co-express genes. Six clusters of genes were observed using the MMVNDs. According to the functional analysis, most genes in clusters 1-6 are related to the B-cell receptors and IgG immunoglobulin complex, proliferating cell nuclear antigen complex, the metabolic pathways of iron, fat, and body mass control, the defense against bacteria, the cancer development incidence, and the chronic kidney failure, respectively. Conclusion: Results showed that most biological changes of aging between tissues are related to the specific components of immune cells. Also, the application of MMVNDs can increase the ability to find similar genes.

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 525 ◽  
Author(s):  
Samar Tareen ◽  
Michiel Adriaens ◽  
Ilja Arts ◽  
Theo de Kok ◽  
Roel Vink ◽  
...  

Obesity is a global epidemic identified as a major risk factor for multiple chronic diseases and, consequently, diet-induced weight loss is used to counter obesity. The adipose tissue is the primary tissue affected in diet-induced weight loss, yet the underlying molecular mechanisms and changes are not completely deciphered. In this study, we present a network biology analysis workflow which enables the profiling of the cellular processes affected by weight loss in the subcutaneous adipose tissue. Time series gene expression data from a dietary intervention dataset with two diets was analysed. Differentially expressed genes were used to generate co-expression networks using a method that capitalises on the repeat measurements in the data and finds correlations between gene expression changes over time. Using the network analysis tool Cytoscape, an overlap network of conserved components in the co-expression networks was constructed, clustered on topology to find densely correlated genes, and analysed using Gene Ontology enrichment analysis. We found five clusters involved in key metabolic processes, but also adipose tissue development and tissue remodelling processes were enriched. In conclusion, we present a flexible network biology workflow for finding important processes and relevant genes associated with weight loss, using a time series co-expression network approach that is robust towards the high inter-individual variation in humans.


2017 ◽  
Author(s):  
Anthony Szedlak ◽  
Spencer Sims ◽  
Nicholas Smith ◽  
Giovanni Paternostro ◽  
Carlo Piermarocchi

AbstractModern time series gene expression and other omics data sets have enabled unprecedented resolution of the dynamics of cellular processes such as cell cycle and response to pharmaceutical compounds. In anticipation of the proliferation of time series data sets in the near future, we use the Hopfield model, a recurrent neural network based on spin glasses, to model the dynamics of cell cycle in HeLa (human cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties of these cyclic Hopfield systems, including the ability of populations of simulated cells to recreate experimental expression data and the effects of noise on the dynamics. Next, we use a genetic algorithm to identify sets of genes which, when selectively inhibited by local external fields representing gene silencing compounds such as kinase inhibitors, disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four kinases BRD4, MAPK1, NEK7, and YES1 in HeLa cells causes simulated cells to accumulate in the M phase. Finally, we suggest possible improvements and extensions to our model.Author SummaryCell cycle – the process in which a parent cell replicates its DNA and divides into two daughter cells – is an upregulated process in many forms of cancer. Identifying gene inhibition targets to regulate cell cycle is important to the development of effective therapies. Although modern high throughput techniques offer unprecedented resolution of the molecular details of biological processes like cell cycle, analyzing the vast quantities of the resulting experimental data and extracting actionable information remains a formidable task. Here, we create a dynamical model of the process of cell cycle using the Hopfield model (a type of recurrent neural network) and gene expression data from human cervical cancer cells and yeast cells. We find that the model recreates the oscillations observed in experimental data. Tuning the level of noise (representing the inherent randomness in gene expression and regulation) to the “edge of chaos” is crucial for the proper behavior of the system. We then use this model to identify potential gene targets for disrupting the process of cell cycle. This method could be applied to other time series data sets and used to predict the effects of untested targeted perturbations.


2012 ◽  
Vol 6 (1) ◽  
pp. 69 ◽  
Author(s):  
Bruce A Rosa ◽  
Yuhua Jiao ◽  
Sookyung Oh ◽  
Beronda L Montgomery ◽  
Wensheng Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document