scholarly journals A Novel Approach to Detect Tubing Leakage in Carbon Dioxide (CO) Injection Wells via an Efficient Annular Pressure Monitoring

2015 ◽  
Vol 8 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Liang-Biao Ouyang

Due to the unique corrosion potential and safety hazards of carbon dioxide (CO), tubing leakage of CO in a CO injection well may occur and lead to undesired consequences to environment, human being and facility. As a result, quick detection of any carbon dioxide leakage and accurate identification of leakage location are extremely beneficial to obtain critical information to fix the leakage in a prompt manner, prevent incidents / injury / casualty, and achieve high standards of operational safety. Annular pressure monitoring has been identified as an effective and reliable approach for detecting tubing and casing leakage of fluids (including hazardous gas like CO) in a well. Accurate prediction of annular pressure change associated with the leakage will certainly help the operation. In an effort to assess annular pressure characteristics and thus improve understanding of tubing leakage, a multiphase dynamic modeling approach has been applied to simulate the carbon dioxide, completion brine and formation water’s flow and associated heat transfer processes along wellbore, tubing and annulus in carbon dioxide injection wells designed for carbon capture and sequestration (CCS) [1] projects. Two operational scenarios – one for routine CO injection and another for well shut-in – have been considered in the investigation. Key parameters that may have significant impacts on the process have been investigated. On the basis of the investigation, a novel approach has been proposed in the paper for quickly detecting the leakage of carbon dioxide in a CO injection well. Two simple equations have been developed to pinpoint the leakage location by means of real-time measurement and monitoring of the change in annular pressure. Recommendations based on a series of dynamic simulation results have been provided and can be readily incorporated into detailed operating procedures to enhance carbon dioxide injection wells’ operational safety.

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2011 ◽  
Author(s):  
Lawrence J. Pekot ◽  
Pierre Petit ◽  
Yasmin Adushita ◽  
Stephanie Saunier ◽  
Rohan Lakdasa De Silva

2021 ◽  
Vol 43 (4) ◽  
pp. 467-475
Author(s):  
A. I. Shayakhmetov ◽  
V. L. Malyshev ◽  
E. F. Moiseeva ◽  
A. I. Ponomarev ◽  
Yu. V. Zeigman

The purpose of this work is to study the effect of carbon dioxide oil solubility on the aggregation of asphaltene associates and decrease of oil permeability of sandstones. Consideration is given to the interaction variants of oil and carbon dioxide in a free volume before being injected into a porous medium and immediately in the porous medium. The influence of oil composition on the aggregation of asphaltene associates is studied. The effect of the dissolved carbon dioxide on associate dispersion in oil is examined through oil filtering in sandstones. If asphaltene aggregation occurs in a porous medium it causes pore plugging leading to reduced permeability, complicates the development of carbon dioxide injection wells and, as a result, prevents from achieving the planned indicators of oil production and oil recovery. It is found that in the case when oil interacts with carbon dioxide in the free volume before being injected into a porous medium, the increase in the volume of filtered oil and the concentration of carbon dioxide dissolved in oil, and decrease in sandstone permeability reduce the relative mobility of oil with the dissolved carbon dioxide. The significant influence of sandstone permeability on the experimental results indicates that the sizes of asphaltene aggregates are comparable to the sizes of small pores. We have not observed complete attenuation of filtration after passing of oil with dissolved carbon dioxide through sandstones. Based on the analysis of changes in oil composition and properties carried out in the laboratory experiments on oil displacement by carbon dioxide rims, it has been determined that aggregation of asphaltene associates takes place under immediate contact of oil and carbon dioxide in a porous medium. The higher the asphaltene content in oil, the lower the formation permeability, whereas tight formations feature a more significant decrease in permeability.


Author(s):  
Krunoslav Sedić ◽  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pašić

Well integrity related to carbon dioxide injection into depleted oil and gas reservoirs can be compromised by corrosion which can affect casing, downhole and surface equipment and well cement. Impact on well cement can cause overall degradation of set cement and lead to migration of carbon dioxide back to the surface. Thus, special types of cements should be used. One of the acceptable solutions is application of cement blends based on a mixture of Portland cement and pozzolans. The present paper deals with optimization of the cement slurry design containing zeolite which is nowadays widely used due to its high pozzolan activity potential. Cement blends containing 20%, 30% and 40% zeolite clinoptilolite were used. Cement slurries were optimized for application in slim hole conditions on CO2 injection wells on Žutica and Ivanić oil fields in Croatia (Europe), where an old and deteriorated production casing was re-lined with new smaller sized one. Results obtained by this study suggest that cement slurry containing zeolite can be optimized for application in well conditions related to CO2 injection and underground storage, ranging from a slim hole to standard size casing cement jobs which leads to an improvement of well integrity related to CO2 injection.


2019 ◽  
Vol 104 ◽  
pp. 873-886 ◽  
Author(s):  
Shengshan Chen ◽  
Hanxiang Wang ◽  
Yanxin Liu ◽  
Wenjian Lan ◽  
Xiaoxiao Lv ◽  
...  

2018 ◽  
Vol 35 (1) ◽  
pp. 157
Author(s):  
Małgorzata Formela ◽  
Kamil Gonet ◽  
Stanisław Stryczek ◽  
Rafał Wiśniowski

Sign in / Sign up

Export Citation Format

Share Document