Modeling the non- isothermal flow and the influencing factors in carbon dioxide injection wells

Author(s):  
L. Dou ◽  
◽  
G. Li ◽  
T. Li ◽  
K. Zhao ◽  
...  
2011 ◽  
Author(s):  
Lawrence J. Pekot ◽  
Pierre Petit ◽  
Yasmin Adushita ◽  
Stephanie Saunier ◽  
Rohan Lakdasa De Silva

2021 ◽  
Vol 43 (4) ◽  
pp. 467-475
Author(s):  
A. I. Shayakhmetov ◽  
V. L. Malyshev ◽  
E. F. Moiseeva ◽  
A. I. Ponomarev ◽  
Yu. V. Zeigman

The purpose of this work is to study the effect of carbon dioxide oil solubility on the aggregation of asphaltene associates and decrease of oil permeability of sandstones. Consideration is given to the interaction variants of oil and carbon dioxide in a free volume before being injected into a porous medium and immediately in the porous medium. The influence of oil composition on the aggregation of asphaltene associates is studied. The effect of the dissolved carbon dioxide on associate dispersion in oil is examined through oil filtering in sandstones. If asphaltene aggregation occurs in a porous medium it causes pore plugging leading to reduced permeability, complicates the development of carbon dioxide injection wells and, as a result, prevents from achieving the planned indicators of oil production and oil recovery. It is found that in the case when oil interacts with carbon dioxide in the free volume before being injected into a porous medium, the increase in the volume of filtered oil and the concentration of carbon dioxide dissolved in oil, and decrease in sandstone permeability reduce the relative mobility of oil with the dissolved carbon dioxide. The significant influence of sandstone permeability on the experimental results indicates that the sizes of asphaltene aggregates are comparable to the sizes of small pores. We have not observed complete attenuation of filtration after passing of oil with dissolved carbon dioxide through sandstones. Based on the analysis of changes in oil composition and properties carried out in the laboratory experiments on oil displacement by carbon dioxide rims, it has been determined that aggregation of asphaltene associates takes place under immediate contact of oil and carbon dioxide in a porous medium. The higher the asphaltene content in oil, the lower the formation permeability, whereas tight formations feature a more significant decrease in permeability.


Author(s):  
Krunoslav Sedić ◽  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pašić

Well integrity related to carbon dioxide injection into depleted oil and gas reservoirs can be compromised by corrosion which can affect casing, downhole and surface equipment and well cement. Impact on well cement can cause overall degradation of set cement and lead to migration of carbon dioxide back to the surface. Thus, special types of cements should be used. One of the acceptable solutions is application of cement blends based on a mixture of Portland cement and pozzolans. The present paper deals with optimization of the cement slurry design containing zeolite which is nowadays widely used due to its high pozzolan activity potential. Cement blends containing 20%, 30% and 40% zeolite clinoptilolite were used. Cement slurries were optimized for application in slim hole conditions on CO2 injection wells on Žutica and Ivanić oil fields in Croatia (Europe), where an old and deteriorated production casing was re-lined with new smaller sized one. Results obtained by this study suggest that cement slurry containing zeolite can be optimized for application in well conditions related to CO2 injection and underground storage, ranging from a slim hole to standard size casing cement jobs which leads to an improvement of well integrity related to CO2 injection.


2018 ◽  
Vol 35 (1) ◽  
pp. 157
Author(s):  
Małgorzata Formela ◽  
Kamil Gonet ◽  
Stanisław Stryczek ◽  
Rafał Wiśniowski

2015 ◽  
Vol 8 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Liang-Biao Ouyang

Due to the unique corrosion potential and safety hazards of carbon dioxide (CO), tubing leakage of CO in a CO injection well may occur and lead to undesired consequences to environment, human being and facility. As a result, quick detection of any carbon dioxide leakage and accurate identification of leakage location are extremely beneficial to obtain critical information to fix the leakage in a prompt manner, prevent incidents / injury / casualty, and achieve high standards of operational safety. Annular pressure monitoring has been identified as an effective and reliable approach for detecting tubing and casing leakage of fluids (including hazardous gas like CO) in a well. Accurate prediction of annular pressure change associated with the leakage will certainly help the operation. In an effort to assess annular pressure characteristics and thus improve understanding of tubing leakage, a multiphase dynamic modeling approach has been applied to simulate the carbon dioxide, completion brine and formation water’s flow and associated heat transfer processes along wellbore, tubing and annulus in carbon dioxide injection wells designed for carbon capture and sequestration (CCS) [1] projects. Two operational scenarios – one for routine CO injection and another for well shut-in – have been considered in the investigation. Key parameters that may have significant impacts on the process have been investigated. On the basis of the investigation, a novel approach has been proposed in the paper for quickly detecting the leakage of carbon dioxide in a CO injection well. Two simple equations have been developed to pinpoint the leakage location by means of real-time measurement and monitoring of the change in annular pressure. Recommendations based on a series of dynamic simulation results have been provided and can be readily incorporated into detailed operating procedures to enhance carbon dioxide injection wells’ operational safety.


2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


Sign in / Sign up

Export Citation Format

Share Document