scholarly journals Biodiesel Production from Crude Cottonseed Oil: An Optimization Process Using Response Surface Methodology

2011 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Xiaohu Fan
2011 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Xiaohu Fan ◽  
Xi Wang ◽  
Feng Chen

Biodiesel, known as fatty acid methyl ester (FAME), was produced from crude cottonseed oil (triglycerides) by transesterification with methanol in the presence of sodium hydroxide. This process was optimized by applying factorial design and response surface methodology (RSM) with SAS and PSIPLOT programs. A second-order mathematical model was obtained to predict the yield as a function of methanol/oil molar ratio, catalyst concentration, reaction temperature, and rate of mixing. Based on ridge max analysis and RSM, as well as economic cost consideration, the practical optimal condition for the production of biodiesel was found to be: methanol/oil molar ratio, 7.9; temperature, 53 °C; time, 45 min; catalyst concentration, 1.0%; and rate of mixing, 268 rpm. The optimized condition was validated with the actual biodiesel yield of 97%. Furthermore, the biodiesel was confirmed by HPLC analyses that triglycerides of cottonseed oil were almost completely converted to FAME.


2021 ◽  
Vol 6 (2) ◽  
pp. 7-15
Author(s):  
T.O. Rabiu ◽  
N.A. Folami ◽  
N.A. Badiru ◽  
N.A. Kinghsley ◽  
B.T. Dare ◽  
...  

The ever-growing concern for the safety of lives and the environment as well as the depletion in fossil fuels reserves across the globe has led to the keen interests of many researchers in the field of renewable energy. This study was therefore undertaken to investigate the trans-esterification optimization process for biodiesel production from palm kernel using response surface methodology. The materials for the trans-esterification processes were palm kernel oil, Methanol and sodium hydroxide. The effects of reaction temperature (oC), catalyst concentration (wt%) and reaction time (min) on the yield were evaluated. The properties of the biodiesel produced showed that it met the ASTM standard for biodiesel. A quadratic polynomial model, Yield (%) = 78.60–3.12A–.62B + 0.00C -0.75AB – 3.50AC + 1.50BC + 2.82A2– 0.18B2 + 1.08C2, was developed that can be used to predict yield of biodiesel at any value of the different parameters investigated. The ANOVA for the model of the biodiesel yield obtained indicates that the models fit well in describing the relationship between the predictor (biodiesel yield) and the factors (methanol to oil ratio, catalyst concentration and reaction time). The optimal trans-esterification conditions were found to be 60°C for temperature, 60minutes for reaction time, 0.878w% of oil as Sodium hydroxide (catalyst) concentration and methanol/oil ratio of 1:6. At these optimal conditions, the biodiesel yield was fond to be 89.32% The generated biodiesel had high cetane number, better engine ignitability and poses lesser pollution problems than petroleum diesel.


2017 ◽  
Vol 33 (1) ◽  
pp. 66
Author(s):  
A. Garba ◽  
M. M. Abarshi ◽  
M. B. Shuaib ◽  
R. Sulaiman

Energies ◽  
2012 ◽  
Vol 5 (9) ◽  
pp. 3307-3328 ◽  
Author(s):  
Muhammad Waseem Mumtaz ◽  
Ahmad Adnan ◽  
Farooq Anwar ◽  
Hamid Mukhtar ◽  
Muhammad Asam Raza ◽  
...  

2022 ◽  
Vol 184 ◽  
pp. 753-764
Author(s):  
Gul Muhammad ◽  
Ange Douglas Potchamyou Ngatcha ◽  
Yongkun Lv ◽  
Wenlong Xiong ◽  
Yaser A. El-Badry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document