Ag (I) Catalyzed Oxidation of SO2 in Aqueous Solution Differing Effect of Benzoate Ions in Acidic Medium

Author(s):  
Arun Kumar Sharma ◽  
Pradeep Parasher ◽  
Rashmi Sharma ◽  
Davarakonda S.N. Prasad
2000 ◽  
Vol 65 (9) ◽  
pp. 1394-1402 ◽  
Author(s):  
Ľubica Adamčíková ◽  
Mária Hupková ◽  
Peter Ševčík

Spatial patterns in methylene blue-catalyzed oxidation of fructose at alkaline pH were found in aqueous solution and in gel systems. In a thin liquid layer (thickness >2.4 mm) a mixture of spots and stripes was formed by interaction of a nonlinear reaction and the Rayleigh or Maragoni instabilities. The pattern formation was affected by initial reactant concentrations and by the thickness of the reaction mixture layer. Long-lasting structures were formed in gel systems (polyacrylamide, agar, gelatin). These patterns also arise primarily from hydrodynamic processes.


2003 ◽  
Vol 68 (7) ◽  
pp. 535-542 ◽  
Author(s):  
V.W. Bhagwat ◽  
J. Tiwari ◽  
A. Choube ◽  
B. Pare

The kinetics and mechanism of the C16TABcatalyzed oxidation of diethylene glycol (2,2?-oxydiethanol) by chloramine-T in acidic medium has been studied. The reaction has a first-order dependence on chloramine-T. With excess concentrations of other reactants, the reaction rate follows fractional order kinetics with respect to [diethylene glycol]. The micellar effect due to cetyltrimethylammonium bromide, a cationic surfactant, has been studied. The reaction is catalyzed by chloride ions as well. The small salt effect and increase in the reaction rate with increasing dielectric constant suggest the involvement of neutral molecules in the rate determining step. Addition of p-toluenesulfonamide retards the reaction rate. On the basis of product analysis, a pertinent mechanism is proposed.


1972 ◽  
Vol 27 (10) ◽  
pp. 1161-1163 ◽  
Author(s):  
S. P. Mushran ◽  
R. Sanehi ◽  
M. C. Agraval

The Osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone by chloramine-T, in highly alkaline solutions showed first order dependence to chloramine-T and osmium (VIII). The order of the reactions with respect to alkali and ketone were found to be fractional, being ~-0.82 and 0.3 respectively. No effects of ionic strength were evident. The mechanism has been proposed on the basis of the formation of a complex between N-chlorotoluene-p-sulfonamide and osmium (VIII) in the slow step, which in turn oxidizes the enol anion of the reducing substrate in the fast step.During the study of the mechanism of oxidations by chloramine-T, the kinetics of the oxidation of α-hydroxy acids 1 in presence of osmium (VIII) as catalyst, glycerol2 in neutral and alkaline media, p-cresol3 in an acidic medium, hexacyanoferrate (II)4 in a feebly acidic medium (pH 6-7) and aliphatic aldehydes 5 in alkaline media have been investigated.Despite the high redox potential6 of the chloramine-T/toluene sulfonamide system (1.138 V at pH 12), the oxidation of acetone does not take place in absence of catalyst and that of ethylmethyl ketone proceeds only in highly alkaline solutions7 (NaOH>0.01 M). In the present note the kinetics of the osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone have been recorded.


2008 ◽  
Vol 48 (6) ◽  
pp. 440-443 ◽  
Author(s):  
V. B. Romakh ◽  
G. Süss-Fink ◽  
G. B. Shul’pin

Sign in / Sign up

Export Citation Format

Share Document