Ni/x%Nb2O5/Al2O3 Catalysts Prepared via Coprecipitation-Wet Impregnation Method for Methane Steam Reforming

2020 ◽  
Vol 9 (1) ◽  
pp. 80-89
Author(s):  
Juliana F. Gonçalves ◽  
Mariana M.V.M. Souza

Background: Hydrogen has been considered the energy source of the future and one of the processes for its production is the methane steam reforming. The catalyst used industrially is Ni/Al2O3 and the addition of promoter oxides can be an alternative to improve the performance of this catalyst, which suffers from coke formation and sintering. Objective: Evaluate the role of niobia on catalytic activity and stability. Methods: Ni/x%Nb2O5/Al2O3 (x = 5, 10 and 20) catalysts were synthesized via coprecipitation-wet impregnation method and characterized by X-ray fluorescence (XRF), N2 adsorption-desorption, X-ray diffraction (XRD), temperature- programmed reduction (TPR), temperature-programmed desorption of ammonia (TPD-NH3), etc. Finally, the catalysts were tested for methane steam reforming reaction. Results: All niobia-doped catalysts presented similar values of methane conversion and when comparing with Ni-Al, the addition of niobia slightly improved the methane conversion. In the stability test at 800oC, all doped and non-doped catalysts did not deactivate during the 24 h of reaction. Conclusion: The addition of 10 and 20 wt.% of niobia had a significant promoter effect over Ni/Al2O3 catalyst in terms of activity and stability at 800 oC and the sample with 20 wt.% of niobia presented lower coke formation.

2018 ◽  
Vol 4 (2) ◽  
pp. 191
Author(s):  
Tutuk Djoko Kusworo ◽  
A R Songip ◽  
N A. Saidina Amin

The characterization of NiO-CoO/MgO catalyst for autothermal reforming of methaneThe drawback of conventional reforming of methane such as partial oxidation and steam reforming was carbon formation. The research was developed a suitable catalyst for combination of partial and steam reforming of methane and called autothermal reforming to reduce the coke formation. The NiO-CoO/MgO catalysts were prepared by an impregnation method and characterized by Temperature Programmed Reduction (TPR), X-ray Diffraction (XRD) and Thermal Gravitymetry Analysis (TGA). The TPR and XRD results reveal that the catalyst characteristic is strongly influenced by the Co/Ni ratio. From TPR and TGA analysis, the sintering phenomena did not occur in the autothermal reforming of methane. The results reveal that Co/Ni ratios have a small effect in the catalytic activity for autothermal reforming. Nevertheless, the catalyst showed an optimum performance in this process when its Co/Ni ratio was 0.75. Keywords: Autothermal ReformingAbstrakMasalah yang terjadi pada proses konvensional reformasi metana seperti oksidasi parsial metana dan reformasi kukus adalah pembentukan karbon. Penelitian yang dilakukan adalah mengembangkan katalis yang sesuai untuk gabungan proses oksidasi parsial dan reformasi kukus atau yang disebut reformasi metana secara autothermal. Katalis NiO-CoO/MgO yang digunakan dibuat dengan metode impregnasi dan dilakukan pengujian dengan TPR, XRD dan TGA untuk mengetahui sifat-sifat dari katalis tersebut. Hasil TPR dan XRD menunjukkan bahwa karakteristik dari katalis sangat dipengaruhi oleh perbandingan CoiN i. Hasil pengamatan TPR dan TGA menunjukan bahwa sintering tidak terjadi di dalam proses reformasi metana secara autothermal. Hasil eksperimen juga menunjukan bahwa perbandingan Co/Ni hanya kecil pengaruhnya pada unjuk kerja katalis. Namun demikian katalis menunjukan unjuk kerja yang optimum pada perbandingan CoiN i = 0.75. Kata Kunci: Reformasi Autothermal


2020 ◽  
Vol 6 (3) ◽  
pp. 52 ◽  
Author(s):  
Vincenzo Palma ◽  
Eugenio Meloni ◽  
Simona Renda ◽  
Marco Martino

The effect of the addition of CeO2 to alumina-based washcoat slurry formulation on the methane steam reforming (MSR) reaction was investigated. Five Al2O3-CeO2-based washcoat slurries, differing from each other in the Al2O3/CeO2 ratio (nominal ratio equal to ∞, 0.042, 0.087, 0.250, 0.667) were prepared, dried and calcined; the resulting powders were loaded with nickel as an active metal and the obtained catalysts were tested in MSR reaction. Five cylindrical silicon carbide (SiC) monoliths were washcoated with the prepared slurries and their mechanical resistance was evaluated through the ultrasound adherence test. The activity tests results highlighted the best performance in terms of methane conversion and hydrogen selectivity of the powder catalyst, with the Al2O3/CeO2 percentage nominal ratio equal to 0.042. A structured catalyst was finally prepared by loading a SiC monolith with the most active catalytic formulation and tested in MSR reaction. The performance of the structured catalyst was evaluated in terms of methane conversion and its stability was verified in a time-on-stream test, which allowed for the evaluation of the carbon formation rate; furthermore, its activity was characterized by the estimation of the kinetic parameters. The results highlighted the beneficial effect of ceria addition on the catalytic activity; moreover, compared with data of the literature, the calculated carbon formation rate demonstrated a good resistance of the catalyst to coke formation.


2011 ◽  
Vol 324 ◽  
pp. 453-456 ◽  
Author(s):  
Doris Homsi ◽  
Samer Aouad ◽  
Cedric Gennequin ◽  
Antoine Aboukaïs ◽  
Edmond Abi-Aad

Co6Al2oxide was prepared using the hydrotalcite route. The obtained solid was thermally stabilized at 500°C and then impregnated with 5 wt.% copper or 1 wt.% ruthenium nitrate solution followed by calcination at 500°C under an air flow. X-ray diffraction results showed that the calcination of the impregnated solids led to the formation of various oxides (CuO, RuO2, Co3O4, CoAl2O4, CoAl2O4). The different impregnated and non impregnated solids were tested in the methane steam reforming reaction (MSR). Methane conversion did not exceed 5% at 800°C in the case of the non impregnated solid, whereas the impregnation strongly enhanced the reactivity: ~89% and ~92% conversions were reached at 600°C for Cu and Ru respectively. The good reactivity of ruthenium impregnated catalyst was attributed to the formation of easily reducible ruthenium and cobalt oxide species at the surface of the support. The addition of ruthenium made the reduction of surface and bulk cobalt oxides possible at lower temperatures.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1174
Author(s):  
Magdalena Mosinska ◽  
Waldemar Maniukiewicz ◽  
Malgorzata I. Szynkowska-Jozwik ◽  
Pawel Mierczynski

The oxy-steam reforming of liquefied natural gas reaction (OSR-LNG) is promising process for syngas generation. In this paper, the catalytic properties of NiO/La2O3 systems prepared by wet impregnation and co-precipitation methods were extensively investigated in OSR-LNG reaction. The physicochemical properties of the studied catalytic materials were determined using various techniques including Temperature programmed reduction (TPR-H2), Temperature programmed desorption (TPD-NH3), Brunauer, Emmett and Teller (BET), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) with an energy dispersive X-Ray spectrometer (EDS). Reactivity measurements performed in the OSR-LNG process showed that the catalyst preparation method and the calcination temperature significantly affected the activity of NiO/La2O3 catalysts in the OSR-LNG reaction. The catalytic activity tests showed that NiO/La2O3 system prepared by a wet impregnation method and calcined at 700 °C showed the total conversion of the LNG component at 900 °C and the highest H2 yield at 700 and 900 °C. The phase composition studies confirmed the formation of the LaNiO3 structure in the case of the NiO/La2O3 catalyst prepared by wet impregnation, calcined at the temperature of 700 °C. Catalytic activity measurements showed that the reactivity of the catalysts was related to their phase composition and acidity. SEM images of spent catalysts showed that the smallest amount of carbon deposit was detected on the surface of the most active systems.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 947 ◽  
Author(s):  
Edson Edain González ◽  
Ricardo Rangel ◽  
Javier Lara ◽  
Pascual Bartolo-Pérez ◽  
Juan José Alvarado-Gil ◽  
...  

Nowadays, one of the most important challenges that humanity faces is to find alternative ways of reducing pollutant emissions. CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were prepared to efficiently transform carbon monoxide (CO) to carbon dioxide (CO2) at low temperatures. The systems were prepared in a two-step process. First, Bi2Mo1−xRuxO6 supports were synthesized through the hydrothermal procedure under microwave heating. Then, CeO2 was deposited on Bi2Mo1−xRuxO6 using the wet impregnation method, while the incipient impregnation method was selected to deposit gold nanoparticles. The CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were characterized using SEM microscopy and XRD. Furthermore, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used. Tests were carried out for the supported catalysts in CO oxidation, and high conversion values, nearing 100%, was observed in a temperature range of 100 to 250 °C. The results showed that the best system was the Au/Bi2Mo0.95Ru0.05O6 catalyst, with CO oxidation starting at 50 °C and reaching 100% conversion at 186 °C.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 380 ◽  
Author(s):  
Pawel Mierczynski ◽  
Agnieszka Mierczynska ◽  
Radoslaw Ciesielski ◽  
Magdalena Mosinska ◽  
Magdalena Nowosielska ◽  
...  

Herein, we report monometallic Ni and bimetallic Pd–Ni catalysts supported on CeO2–Al2O3 binary oxide which are highly active and selective in oxy-steam reforming of methanol (OSRM). Monometallic and bimetallic supported catalysts were prepared by an impregnation method. The physicochemical properties of the catalytic systems were investigated using a range of methods such as: Brunauer–Emmett–Teller (BET), X-ray Powder Diffraction (XRD), Temperature-programmed reduction (TPR–H2), Temperature-programmed desorption (TPD–NH3), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscope equipped with an energy dispersive spectrometer (SEM–EDS). We demonstrate that the addition of palladium facilitates the reduction of nickel catalysts. The activity tests performed for all catalysts confirmed the promotion effect of palladium on the catalytic activity of nickel catalyst and their selectivity towards hydrogen production. Both nickel and bimetallic palladium–nickel supported catalysts showed excellent stability during the reaction. The reported catalytic systems are valuable to make advances in the field of fuel cell technology.


2019 ◽  
Vol 19 (11) ◽  
pp. 7416-7420
Author(s):  
Ning Wei ◽  
Jia Zhang ◽  
Hexiang Zhong ◽  
Liwei Pan ◽  
Zeyu Wang ◽  
...  

NiO/CexZryO2-Sil-1 catalysts were prepared using an In-Situ self-assembly approach by coupling silicalite-1 and CexZryO2. This one-step synthesis method utilized the high surface area and hydrothermal stability of silicalite-1 and the good oxidation-reduction ability of the CexZryO2, and hence offered high synthesis efficiency. The catalyst structure was examined by N2-physisorption, temperature-programmed reduction, transmission electron microscopy, and X-ray diffraction. All the results showed that silicalite-1 was well-encapsulated by NiO/Ce0.5Zr0.5O2. Furthermore, the effect of the Ce/Zr molar ratio on the performance of the catalysts was investigated in detail. The catalysts were subjected to methane steam reforming at high temperatures to evaluate their catalytic performance. The result showed that the NiO/Ce0.5Zr0.5O2-Sil-1 catalyst exhibited the best performance and its methane conversion efficiency reached up to 99.5%. Even after 16 h of continuous stability test, this catalyst could retain a methane conversion efficiency of 97.8%.


Sign in / Sign up

Export Citation Format

Share Document