Optimization of Nutritional parameters by One-Factor-At-A-Time method for the Biosynthesis of Alkaline Protease from isolated strain Alternaria alternata TUSGF1

2021 ◽  
Vol 10 ◽  
Author(s):  
Tapasi Polley ◽  
Uma Ghosh

Background: Alkaline protease essential enzymes that have several applications in our industry. Objective: The aim was optimization of nutritional parameters by one-factor-at-a-time (OFAT) method in solid-state fermentation. Method: Production of protease employing our laboratory new isolate, Alternaria alternata TUSG1 (strain accession number- MF401426) under solid-state fermentation was optimized. The nutritional factors was investigated and only one agricultural residue (cauliflower leaves) with different particle size was checked. Results: Highest enzyme production was obtained with medium particle size of cauliflower leaves (610 U/gds) followed by coarse waste (603U/gds) and fine waste (596 U/gds) using 106 spores/ml as inoculum at 30° C for 7 days. The organism utilized carbon sources 0.5 % (w/w) dextrose, fructose, maltose, sucrose, lactose and starch. Among them maltose was found to be the best carbon source. A variety of inorganic and organic media components were investigated for nitrogen sources 0.3 % (w/w) and skim milk turned out to the best. Conclusion: The maximum enzyme activity was obtained with 1% maltose, 0.5% skim milk and 0.05% MgSO4. With optimized media 1.53 fold increase in the protease production at agricultural residue cauliflower leaves was obtained.

2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


2016 ◽  
Vol 182 (2) ◽  
pp. 511-528 ◽  
Author(s):  
R. Renganath Rao ◽  
M. Vimudha ◽  
N. R. Kamini ◽  
M. K. Gowthaman ◽  
B. Chandrasekran ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


Sign in / Sign up

Export Citation Format

Share Document