Variation in Methane Yield from Anaerobic Digestion of Cattle Manure

2015 ◽  
Vol 3 (1) ◽  
pp. 66-71 ◽  
Author(s):  
W. J. Oosterkamp
2014 ◽  
Vol 35 (19) ◽  
pp. 2476-2482 ◽  
Author(s):  
Sutaryo Sutaryo ◽  
Alastair James Ward ◽  
Henrik Bjarne Møller

2011 ◽  
Vol 79 ◽  
pp. 48-52 ◽  
Author(s):  
Hong Li Li ◽  
Yan Wang

The aim of this paper was to analyze the biomethanization process of cattle manure with four different total solid percentages (15%, 20%, 25%, 30% TS) and three different stirring frequency. The experimental procedure was programmed to select the initial performance parameter and the operational parameter in a lab-reactor. The values of VFAs indicated that all the reactors showed no destabilization and at the end of the experiment the VFAs were consumed completely. The best performance for cattle manure biodegradation and methane generation was the reactor with 20% TS, with the biogas yield of 0.22 L/g VS and the methane yield of 0.11 LCH4/g VS. Furthermore, the better operational parameter of stirring frequency was stirring once every two days.


2006 ◽  
Vol 53 (8) ◽  
pp. 253-261 ◽  
Author(s):  
M. Effenberger ◽  
J. Bachmaier ◽  
G. Garcés ◽  
A. Gronauer ◽  
P.A. Wilderer ◽  
...  

The potential of a mesophilic–thermophilic–mesophilic anaerobic digestion system was investigated with respect to improvement of both digestion and sanitation efficiencies during treatment of liquid cattle manure. The pilot plant produced a high methane yield from liquid dairy cattle manure of 0.24 m3 (kg VSfed)−1. Considering the low system loading rate of 1.4–1.5 kg VS (m3 d)−1, digestion efficiency compared to conventional processes did not appear improved. The minimum guaranteed retention time in the tubular thermophilic reactor was increased compared to a continuously stirred tank reactor. Levels of intestinal enterococci in raw liquid manure as determined with cultivation methods were reduced by 2.5–3 log units to a level of around 102 cfu/mL. This sanitizing effect was achieved both during mesophilic–thermophilic–mesophilic and thermophilic–mesophilic treatment, provided the thermophilic digester was operated at 53–55°C. A change in feeding interval from 1 h to 4 h did not significantly alter methane yield and sanitation efficiency. It was proposed that a two-stage, thermophilic–mesophilic anaerobic digestion system would be able to achieve the same sanitizing effect and equal or better digestion efficiency at lower costs.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 911 ◽  
Author(s):  
Choon Wee ◽  
Jung-Jeng Su

This study was conducted to evaluate the feasibility of applying a two-step biological treatment process, solid-state anaerobic digestion (SSAD) and black soldier fly larvae (BSFL) composting, for the treatment of dairy cattle manure. Biogas from the SSAD of dairy cattle manure, and the digestate of SSAD was fed to BSFL. In turn, BSFL can be fed to animals as a protein supplement. Adjustment of the pH and 30% inoculation ratio (IR30) during SSAD produced the highest theoretical methane yield, 626.1 ± 28.7 L CH4/kg VSdes, with an ultimate methane yield of 96.81 ± 2.0 L CH4/kg VSload. For BSFL composting, the groups with a feeding rate of 75 and 100 mg/day/larvae had the highest body weight change, which was 969.6 ± 28.4% and 984.1 ± 177.6%, respectively. The combination process of SSAD and BSFL composting increases the incentive for dairy cattle manure treatment instead of conventional composting and produced more valuable products.


Author(s):  
Choon Yong Wee ◽  
Jung-Jeng Su

This study was conducted to evaluate the feasibility of applying a two-step biological treatment process, solid-state anaerobic digestion (SSAD) and black soldier fly larvae (BSFL) composting, for treating dairy cattle manure. Biogas from SSAD of dairy cattle manure, and the digestate of SSAD was fed to BSFL. In turn, BSFL can be fed to animals as a protein supplement. Adjustment of pH and 30% inoculation ratio (IR30) during SSAD produced the highest theoretical methane yield, 626.1±28.7 L CH4/kg VSdes, with an ultimate methane yield of 96.81±2.0 L CH4/kg VSload. For BSFL composting, the groups with a feeding rate of 75 and 100 mg/day/larvae had the highest body weight change, which was 969.6±28.4 and 984.1±177.6%, respectively. The combination process of SSAD and BSFL composting increases the incentive for dairy cattle manure treatment enabled higher waste removal efficiency, and produced more valuable products.


Author(s):  
Gahyun Baek ◽  
Danbee Kim ◽  
Jinsu Kim ◽  
Hanwoong Kim ◽  
Changsoo Lee

The management of cattle manure (CM) has become increasingly challenging because its production continues to rise, while the regulations on manure management have become increasingly stringent. In Korea, most farms produce CM as a dry mixture with lignocellulosic bedding materials (mainly sawdust), making it impractical to treat CM by anaerobic digestion. To address this problem, this study examined whether anaerobic co-digestion with food waste (FW) and pig manure (PM) could be an effective approach for the treatment of CM. The batch anaerobic digestion tests at different CM: FW: PM mixing ratios showed that more methane was produced as the FW fraction increased, and as the CM fraction decreased. The response surface models describing how the substrate mixing ratio affects the methane yield and synergistic effect (methane yield basis) were successfully generated. The models proved that the methane yield and synergistic effect respond differently to changes in the substrate mixing ratio. The maximum 30-day methane yield was predicted at 100% FW, whereas the maximum 30-day synergy index was estimated for the mixture of 47% CM, 6% FW, and 47% PM (total solids basis). The synergy index model showed that CM, FW, and PM could be co-digested without a substantial loss of their methane potential at any mixing ratio (30-day synergy index, 0.89–1.22), and that a possible antagonistic effect could be avoided by keeping the FW proportion less than 50%. The results suggest that co-digestion with PM and FW could be flexibly applied for the treatment and valorization of CM in existing anaerobic digestion plants treating FW and PM.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


Sign in / Sign up

Export Citation Format

Share Document