scholarly journals Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect

Author(s):  
Gahyun Baek ◽  
Danbee Kim ◽  
Jinsu Kim ◽  
Hanwoong Kim ◽  
Changsoo Lee

The management of cattle manure (CM) has become increasingly challenging because its production continues to rise, while the regulations on manure management have become increasingly stringent. In Korea, most farms produce CM as a dry mixture with lignocellulosic bedding materials (mainly sawdust), making it impractical to treat CM by anaerobic digestion. To address this problem, this study examined whether anaerobic co-digestion with food waste (FW) and pig manure (PM) could be an effective approach for the treatment of CM. The batch anaerobic digestion tests at different CM: FW: PM mixing ratios showed that more methane was produced as the FW fraction increased, and as the CM fraction decreased. The response surface models describing how the substrate mixing ratio affects the methane yield and synergistic effect (methane yield basis) were successfully generated. The models proved that the methane yield and synergistic effect respond differently to changes in the substrate mixing ratio. The maximum 30-day methane yield was predicted at 100% FW, whereas the maximum 30-day synergy index was estimated for the mixture of 47% CM, 6% FW, and 47% PM (total solids basis). The synergy index model showed that CM, FW, and PM could be co-digested without a substantial loss of their methane potential at any mixing ratio (30-day synergy index, 0.89–1.22), and that a possible antagonistic effect could be avoided by keeping the FW proportion less than 50%. The results suggest that co-digestion with PM and FW could be flexibly applied for the treatment and valorization of CM in existing anaerobic digestion plants treating FW and PM.

2012 ◽  
Vol 485 ◽  
pp. 306-309
Author(s):  
Li Hong Wang ◽  
Qun Hui Wang ◽  
Wei Wei Cai

Solid-state anaerobic digestion (SSAD) of distiller’s grains (DG) and kitchen waste (KW) for biogas was investigated. Six DG to KW ratios of 10/1, 8/1, 6/1, 4/1, 1/0, and 0/1 was used. The results showed that in 48 digestion days the co-digestion with DG to KW ratio of 8:1 obtained the highest methane yield of 159.74mL/gTS, TS and VS reductions of 58.7% and 71.8%, hemicellulase, cellulose and lignin reductions of 46.7%, 45.4% and 4.0%. Compared to mono-digestions of DG or KW, co-digestion of DG and FW had a good synergistic effect. It indicated that SSAD of cellulosic-based waste and food waste could be one of the options for efficient biogas production and waste treatment


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2017 ◽  
Vol 16 (2) ◽  
pp. 347-360 ◽  
Author(s):  
Dimitrios Komilis ◽  
Raquel Barrena ◽  
Rafaela Lora Grando ◽  
Vasilia Vogiatzi ◽  
Antoni Sánchez ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1018
Author(s):  
Vijayalakshmi Arelli ◽  
Sudharshan Juntupally ◽  
Sameena Begum ◽  
Gangagni Rao Anupoju

The aim of this study was to treat food waste containing 25% total solids (TS) through dry anaerobic digestion (dry AD) process at various pressures (0.5 to 2.5 kg/cm2) and different time duration (20 to 100 min) to understand the impact of pretreatment in enhancing the methane generation potential along with insights on scale up. The findings revealed that vs. reduction and methane yield of 60% and 0.25 L CH4/(g VSadded) can be achieved with pretreated food waste at two kilograms per square centimeter, while pretreatment of food waste at 2 kg/cm2 for 100 min enhanced the vs. reduction from 60% to 85% and methane yield from 0.25 to 0.368 L CH4/(g VSadded). However, the net energy indicated that 40 min of pre -treatment at two kilograms per square centimeter can be a suitable option as methane yield and vs. reduction of 0.272 L CH4/(g VSadded) and 70%, respectively was achieved. The vs. reduction and the methane yield of 45% and 0.14 L CH4/(g VSadded), respectively was obtained from untreated food waste which illustrated that pretreatment had significantly impacted on the enhancement of methane generation and organic matter removal which can make the dry AD process more attractive and feasible at commercial scale.


2014 ◽  
Vol 35 (19) ◽  
pp. 2476-2482 ◽  
Author(s):  
Sutaryo Sutaryo ◽  
Alastair James Ward ◽  
Henrik Bjarne Møller

2014 ◽  
Vol 878 ◽  
pp. 473-480 ◽  
Author(s):  
Jin Rong Qiu ◽  
Yun Long Fu ◽  
Qing Yun Liu ◽  
Shun Yi Li ◽  
Hai Jun Peng ◽  
...  

The Gannan region is the largest navel orange planting area in the world and has the largest production in China. However, about 5 million tons of navel orange waste (NOW) produced annually. NOW has a great environmental risk because of its high content of organic matter and moisture. Anaerobic digestion of NOW with high nitrogen content waste is a promising alternative to treat these wastes. The effect of swine manure (SM), waste active sludge (WAS) as co-substrates and different mixing ratio were examined in three batch-scale studies. In the first investigation, co-digestion of NOW with SM resulted low methane yield and high concentration of VFAs. In the second investigation, NOW was co-digested with WAS, the methane yield was improved by 260% when the mixing ratio of NOW to WAS (VS/VS) was shifted from 1:2 to 2:1. In the third investigation, the co-digestion of NOW with SM and WAS was conducted. Co-digestion of three substrates has higher methane yield than that of previous two studies, with the exception of equal amounts of NOW with co-substrates (mixing ratio of NOW to SM to WAS was 2:1:1). The highest methane yield of all experiments was 0.20 m3 kg-1VS added while the mixing ratio of NOW to SM to WAS was 1:2:1. It seemed to obtain stable digestion performance, the mixing ratio of co-substates to NOW should not be lower than 1:1. WAS was a better co-substrate than SM, as WAS was capable to supply more organic nitrogen to create positive synergistic effects.


2011 ◽  
Vol 79 ◽  
pp. 48-52 ◽  
Author(s):  
Hong Li Li ◽  
Yan Wang

The aim of this paper was to analyze the biomethanization process of cattle manure with four different total solid percentages (15%, 20%, 25%, 30% TS) and three different stirring frequency. The experimental procedure was programmed to select the initial performance parameter and the operational parameter in a lab-reactor. The values of VFAs indicated that all the reactors showed no destabilization and at the end of the experiment the VFAs were consumed completely. The best performance for cattle manure biodegradation and methane generation was the reactor with 20% TS, with the biogas yield of 0.22 L/g VS and the methane yield of 0.11 LCH4/g VS. Furthermore, the better operational parameter of stirring frequency was stirring once every two days.


2006 ◽  
Vol 53 (8) ◽  
pp. 253-261 ◽  
Author(s):  
M. Effenberger ◽  
J. Bachmaier ◽  
G. Garcés ◽  
A. Gronauer ◽  
P.A. Wilderer ◽  
...  

The potential of a mesophilic–thermophilic–mesophilic anaerobic digestion system was investigated with respect to improvement of both digestion and sanitation efficiencies during treatment of liquid cattle manure. The pilot plant produced a high methane yield from liquid dairy cattle manure of 0.24 m3 (kg VSfed)−1. Considering the low system loading rate of 1.4–1.5 kg VS (m3 d)−1, digestion efficiency compared to conventional processes did not appear improved. The minimum guaranteed retention time in the tubular thermophilic reactor was increased compared to a continuously stirred tank reactor. Levels of intestinal enterococci in raw liquid manure as determined with cultivation methods were reduced by 2.5–3 log units to a level of around 102 cfu/mL. This sanitizing effect was achieved both during mesophilic–thermophilic–mesophilic and thermophilic–mesophilic treatment, provided the thermophilic digester was operated at 53–55°C. A change in feeding interval from 1 h to 4 h did not significantly alter methane yield and sanitation efficiency. It was proposed that a two-stage, thermophilic–mesophilic anaerobic digestion system would be able to achieve the same sanitizing effect and equal or better digestion efficiency at lower costs.


2020 ◽  
Vol 136 ◽  
pp. 105541 ◽  
Author(s):  
Wachiranon Chuenchart ◽  
Mohanakrishnan Logan ◽  
Chirawit Leelayouthayotin ◽  
Chettiyappan Visvanathan

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 911 ◽  
Author(s):  
Choon Wee ◽  
Jung-Jeng Su

This study was conducted to evaluate the feasibility of applying a two-step biological treatment process, solid-state anaerobic digestion (SSAD) and black soldier fly larvae (BSFL) composting, for the treatment of dairy cattle manure. Biogas from the SSAD of dairy cattle manure, and the digestate of SSAD was fed to BSFL. In turn, BSFL can be fed to animals as a protein supplement. Adjustment of the pH and 30% inoculation ratio (IR30) during SSAD produced the highest theoretical methane yield, 626.1 ± 28.7 L CH4/kg VSdes, with an ultimate methane yield of 96.81 ± 2.0 L CH4/kg VSload. For BSFL composting, the groups with a feeding rate of 75 and 100 mg/day/larvae had the highest body weight change, which was 969.6 ± 28.4% and 984.1 ± 177.6%, respectively. The combination process of SSAD and BSFL composting increases the incentive for dairy cattle manure treatment instead of conventional composting and produced more valuable products.


Sign in / Sign up

Export Citation Format

Share Document