olive mill solid waste
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7654
Author(s):  
Md. Alhaz Uddin ◽  
Sk. Yasir Arafat Siddiki ◽  
Shams Forruque Ahmed ◽  
Zahidul Islam Rony ◽  
M. A. K. Chowdhury ◽  
...  

The disposal of olive wastes and their wastewater is a major problem worldwide. An important recycling chain can be formed through biogas production and energy conversion from olive waste. This study developed an efficient and effective sustainable model for biogas production using anaerobic digestion conditions with the co-digestion of pretreated olive waste. The sample used was hard olive pomace, which was dried in an oven before being crushed to fine particles with a mortar and pestle. The sample was analyzed by a CE-440 Elemental Analyzer, and Fourier Transform Infrared Spectrophotometer (FTIR) analysis was performed using Shimadzu IRTracer-100. Through the analysis, a substantial amount of electrical energy of 769 kWh/t was found to be generated per ton of olive pomace due to the high volatile solid (VS) percentage of organic waste material incorporated during the calculation. Reduced land area for landfilling olive waste was calculated to be 108 m2 per year, whereas the potential to reduce landfill leachate production was evaluated to be 0.32 m3 per year.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


2021 ◽  
Vol 9 (2) ◽  
pp. 105055
Author(s):  
Yasmim Arantes da Fonseca ◽  
Nayara Clarisse Soares Silva ◽  
Adonai Bruneli de Camargos ◽  
Silvana de Queiroz Silva ◽  
Hector Javier Luna Wandurraga ◽  
...  

2021 ◽  
Vol 120 ◽  
pp. 202-208
Author(s):  
E. Caroca ◽  
A. Serrano ◽  
R. Borja ◽  
A. Jiménez ◽  
A. Carvajal ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5438
Author(s):  
África Fernández-Prior ◽  
Ángeles Trujillo-Reyes ◽  
Antonio Serrano ◽  
Guillermo Rodríguez-Gutiérrez ◽  
Claudio Reinhard ◽  
...  

The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.


Author(s):  
M. J. Fernández-Rodríguez ◽  
D. de la Lama-Calvente ◽  
A. Jiménez-Rodríguez ◽  
R. Pino-Mejías ◽  
R. Borja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document