hyperion image
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 34 (3) ◽  
pp. 670-681
Author(s):  
EFRAIM MARTINS ARAÚJO ◽  
GEORGE LEITE MAMEDE

ABSTRACT The work evaluated the potential for discrimination of land use and occupation around reservoirs, using spectral information obtained by multispectral, hyperspectral satellites and images obtained with an ARP (remotely piloted aircraft). The research analyzed the performance of different images classification techniques applied to multispectral and hyperspectral sensors for the detection and differentiation of soil classes around the Paus Brancos and Marengo reservoirs, located in Settlement 25 of Maio. The classes identified based on surveys in campaigns carried out in 2014 and 2015 around the reservoirs were: water, macrophytes, exposed soil, native vegetation, agriculture, thin and ebbing vegetation, in addition to the cloud and cloud shadow targets. The performance of the classifiers applied to the image of the Hyperion sensor was, in general, superior to those obtained in Landsat 8 image, which can be explained by the high spectral resolution of the first, which facilitates the differentiation of targets with similar spectral response. For validation of the supervised classification method of Maximum Likelihood, Landsat 8 (08/24/2015) and Hyperion (08/28/2015) images were used. The results of the application indicated a good performance of the classifier associated with the RGB composition of the chosen Hyperion image (bands R - 51, G - 161, B - 19) in the detection of the classes around this reservoir, producing a Kappa coefficient of 0.83. The availability of data from the Hyperion sensor is very restricted, which hinders the development of continued research, thus the use of images surpassed by RPA is extremely viable.


Author(s):  
Deepthi ◽  
Tessamma Thomas

In remote sensing, the compositional information of part of the earth’s surface is statistically evaluated by comparing known field or library spectra with the unknown image spectra, known as spectral matching or spectral similarity analysis. In this research, hybrid spectral similarity algorithms developed based on chi-square distance (CHI or χ2) are used to retrieve useful information from the Hyperion hyperspectral oil spill image covering the area near Liaodong Bay of the Bohai Sea, China. In order to evaluate the discriminability of spectral similarity algorithms, a pixel-level matching is carried out between the reference vectors, viz. Oil Slick (O), Sheen (H), Sea Water (S) and Ship Track (T), collected visually from known areas in the image. The hybrid spectral similarity algorithms are statistically assessed for their performance using the spectral discriminatory measures (i) relative spectral discriminatory power (RSDPW), (ii) relative spectral discriminatory probability (RSDPB) and (iii) relative spectral discriminatory entropy (RSDE). Additionally, the selected hybrid algorithms are used on the Hyperion image subset to perform a pixel-based classification. Classification results revealed that the CHI-based hybrid algorithms performed better than all other hybrid spectral similarity methods. Therefore, the CHI-based hybrid algorithms demonstrated their superior spectral discrimination capacity to classify marine spectral classes for oil spill mapping from the hyperspectral dataset.


2019 ◽  
Vol 13 (01) ◽  
pp. 1 ◽  
Author(s):  
Chengye Zhang ◽  
Huazhong Ren ◽  
Ziyi Huang ◽  
Jun Li ◽  
Qiming Qin ◽  
...  

Author(s):  
N. Jeevanand ◽  
P. A. Verma ◽  
S. Saran

<p><strong>Abstract.</strong> In this digital world, there is a large requirement of high resolution satellite image. Images at a low resolution may contain relevant information that has to be integrated with the high resolution image to obtain the required information. This is being fulfilled by image fusion. Image fusion is merging of different resolution images into a single image. The output image contains more information, as the information is integrated from both the images Image fusion was conducted with two different algorithms: regression kriging and the LULU operators. First, regression Kriging estimates the value of a dependent variable at unsampled location with the help of auxiliary variables. Here we used regression Kriging with the Hyperion image band as the response variables and the LISS III image bands are the explanatory variables. The fused image thus has the spectral variables from Hyperion image and the spatial variables from the LISS III image. Second, the LULU operator is an image processing methods that can be used as well in image fusion technique. Here we explored to fuse the Hyperion and LISS III image. The LULU operators work in three stages of the process, viz the decomposition stage, the fusion and the reconstruction stage. Quality aspects of the fused image for both techniques have been compared for spectral quality (correlation) and spatial quality (entropy). The study concludes that the quality of the fused image obtained with regression kriging is better than that obtained with the LULU operator.</p>


Author(s):  
V. K. Sengar ◽  
A. S. Venkatesh ◽  
P. K. Champaty Ray ◽  
S. L. Chattoraj ◽  
R. U. Sharma

The satellite data obtained from various airborne as well as space-borne Hyperspectral sensors, often termed as imaging spectrometers, have great potential to map the mineral abundant regions. Narrow contiguous bands with high spectral resolution of imaging spectrometers provide continuous reflectance spectra for different Earth surface materials. Detailed analysis of resultant reflectance spectra, derived through processing of hyperspectral data, helps in identification of minerals on the basis of their reflectance characteristics. EO-1 Hyperion sensor contains 196 unique channels out of 242 bands (L1R product) covering 0.4&amp;ndash;2.5&amp;thinsp;μm range has also been proved significant in the field of spaceborne mineral potential mapping. <br><br> Present study involves the processing of EO-1 Hyperion image to extract the mineral end members for a part of a gold prospect region. Mineral map has been generated using spectral angle mapper (SAM) method of image classification while spectral matching has been done using spectral analyst tool in ENVI. Resultant end members found in this study belong to the group of minerals constituting the rocks serving as host for the gold mineralisation in the study area.


Author(s):  
S. Padma ◽  
S. Sanjeevi

This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and the deterministic Spectral Angle Mapper (SAM), to accurately map the species and the associated landcover types of the mangroves of east coast of India using hyperspectral satellite images. The JM-SAM algorithm signifies the combination of a qualitative distance measure (JM) and a quantitative angle measure (SAM). The spectral capabilities of both the measures are orthogonally projected using the tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram (Tamil Nadu), Muthupet (Tamil Nadu) and Bhitarkanika (Odisha) mangrove forests along the Eastern Indian coast using the Hyperion image dat asets that contain 242 bands. The developed algorithm is extended in a supervised framework for accurate classification of the Hyperion image. The pixel-level matching performance of the developed algorithm is assessed by the Relative Spectral Discriminatory Probability (RSDPB) and Relative Spectral Discriminatory Entropy (RSDE) measures. From the values of RSDPB and RSDE, it is inferred that hybrid JM-SAM matching measure results in improved discriminability of the mangrove species and the associated landcover types than the individual SAM and JM algorithms. This performance is reflected in the classification accuracies of species and landcover map of Pichavaram mangrove ecosystem. Thus, the JM-SAM (TAN) matching algorithm yielded an accuracy better than SAM and JM measures at an average difference of 13.49 %, 7.21 % respectively, followed by JM-SAM (SIN) at 12.06%, 5.78% respectively. Similarly, in the case of Muthupet, JM-SAM (TAN) yielded an increased accuracy than SAM and JM measures at an average difference of 12.5 %, 9.72 % respectively, followed by JM-SAM (SIN) at 8.34 %, 5.55% respectively. For Bhitarkanika, the combined JM-SAM (TAN) and (SIN) measures improved the performance of individual SAM by (16.1 %, 15%) and of JM by (10.3%, 9.2%) respectively.


Author(s):  
D. Vijayan ◽  
G. Ravi Shankar ◽  
T. Ravi Shankar

An attempt has been made to compare the multispectral Resourcesat-2 LISS III and Hyperion image for the selected area at sub class level classes of major land use/ land cover. On-screen interpretation of LISS III (resolution 23.5 m) was compared with Spectral Angle Mapping (SAM) classification of Hyperion (resolution 30m). Results of the preliminary interpretation of both images showed that features like fallow, built up and wasteland classes in Hyperion image are clearer than LISS-III and Hyperion is comparable with any high resolution data. Even canopy types of vegetation classes, aquatic vegetation and aquatic systems are distinct in Hyperion data. Accuracy assessment of SAM classification of Hyperion compared with the common classification systems followed for LISS III there was no much significant difference between the two. However, more number of vegetation classes could be classified in SAM. There is a misinterpretation of built up and fallow classes in SAM. The advantages of Hyperion over visual interpretation are the differentiation of the type of crop canopy and also crop stage could be confirmed with the spectral signature. The Red edge phenomenon was found for different canopy type of the study area and it clearly differentiated the stage of vegetation, which was verified with high resolution image. Hyperion image for a specific area is on par with high resolution data along with LISS III data.


Sign in / Sign up

Export Citation Format

Share Document