Analytical Insight into the Effect of Electric Field on Molecular Properties of Homonuclear Diatomic Molecules

2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Fouad N. Ajeel
Author(s):  
John A. Agwupuye ◽  
Hitler Louis ◽  
Obieze C. Enudi ◽  
Tomsmith O. Unimuke ◽  
Moses M. Edim

Author(s):  
MICHAEL GUEVARA DE JESUS ◽  
Zhuyun Xiao ◽  
Maite Goiriena-Goikoetxea ◽  
Rajesh V Chopdekar ◽  
Mohanchandra K Panduranga ◽  
...  

Abstract This work demonstrates that magnetoelectric composite heterostructures can be designed at the length scale of 10 microns that can be switched from a magnetized state to a vortex state, effectively switching the magnetization off, using electric field induced strain. This was accomplished using thin film magnetoelectric heterostructures of Fe81.4Ga18.6 on a single crystal (011) [Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-32PT) ferroelectric substrate. The heterostructures were tripped from a multi-domain magnetized state to a flux closure vortex state using voltage induced strain in a piezoelectric substrate. FeGa heterostructures were deposited on a Si-substrate for SQUID magnetometry characterization of the magnetic properties. The magnetoelectric coupling of a FeGa continuous film on PMN-32PT was characterized using a MOKE magnetometer with bi-axial strain gauges, and magnetic multi-domain heterostructures were imaged using X-Ray Magnetic Circular Dichroism – Photoemission Electron Microscopy (XMCD-PEEM) during the transition to the vortex state. The domain structures were modelled using MuMax3, a micromagnetics code, and compared with observations. The results provide considerable insight into designing magnetoelectric heterostructures that can be switched from an “on” state to an “off” state using electric field induced strain.


2020 ◽  
Vol 22 (35) ◽  
pp. 20078-20086
Author(s):  
Qing Zhang ◽  
Yuanyuan Li ◽  
Zexing Cao

Oxygen migration on the surface of coronene (C24) epoxides and their persulfurated derivatives (PSCs) can be easily tuned by an external electric field and their low-lying states show a remarkable oxygen-site dependence.


Sign in / Sign up

Export Citation Format

Share Document