Grewia asiatica Mucilage: A Smart Gelling Polymeric Material for Pharmaceutical Applications In Vitro Studies

2020 ◽  
Vol 12 (2) ◽  
pp. 117-126
Author(s):  
Nitin Gupta ◽  
Giriraj T. Kulkarni ◽  
Pravin Kumar ◽  
Rajendra Awasthi

Background: Natural plant-based materials have several advantages. They are biodegradable, biocompatible, non-toxic, cost-effective, environment friendly, easily available, and can undergo chemical modification. Objective: Grewia asiatica extracts contain various phytoconstituents and have therapeutic benefits such as antimicrobial and anti-diabetic properties. They form colloidal dispersions and make a highly viscous gel in water. Considering these properties of Grewia asiatica mucilage, the present work was aimed to investigate its application in the formulation of gel for the topical delivery of diclofenac sodium. Method: Gel formulations were prepared with and without penetration enhancers using 1% w/w diclofenac sodium as a model drug. The formulations were subjected to different evaluation tests like physical characterization, pH, spreadability, skin irritation, gel retrogradation, drug content and in vitro drug diffusion. The in vitro diffusion of the drug from different formulations was compared with the in vitro drug release profile of the marketed formulation (Omni gel, Cipla, India). To assess the release mechanism, the in vitro release data was analyzed using Korsmeyers-Peppas’ equation. Results: The mucilage showed good gelling behavior in 5.50, 5.75, 6.00, 6.25 and 6.50% concentrations. All the formulations followed the anomalous transport mechanism of drug release. The formulation BP3 showed 90% of drug release after 5.2h of dissolution study, which was similar to the marketed formulation. Hence, formulation BP3 was ideal among all the formulations. Conclusion: It might be concluded that, the Grewia asiatica mucilage may be used as a natural polymeric material for gel formulation.

Author(s):  
Pratik Swarup Das ◽  
Puja Saha

Objective: In present work was designed to develop suitable transdermal matrix patches of Phenformin hydrochloride using various hydrophilic (HPMC) and hydrophobic (EUDRAGID) polymers as matrix formers.Methods: Transdermal patches containing Phenformin hydrochloride were prepared by the solvent casting evaporation technique.Results: Revealed that prepared patches showed good physical characteristics, no drug-polymer interaction and no skin irritation was observed. The in vitro release study revealed that F3 formulation showed maximum release in 24 h. Formulation F3 was subjected for accelerated stability studies. The F3 formulation was found to be stable as there was no drastic change in the Physico-chemical properties of the patches, which was also confirmed by FTIR.Conclusion: Thus conclusion can be made that stable transdermal patches of Phenformin hydrochloride has been developed. F1, F2, F3, F4 formulations showed highest cumulative percentage drug release of 98.13%, 95.50%, 98.65%, 97.21% were obtained during in vitro drug release studies after 24 h. The release of Phenformin hydrochloride appears to be dependent on lipophilicity of the matrix. Moderately lipophillic matrices showed best release. The predominant release mechanism of drug through the fabricated matrices was believed to be by diffusion mechanism. Based upon the in vitro dissolution data the F3 formulation was concluded as optimized formulation.


2017 ◽  
Vol 1 (1) ◽  
pp. 01-02
Author(s):  
Swathi Goli

The aim of the present study was to develop colon targeted matrix tablets of Metformin HCl using various conc. of selected polymers such as HPMC, Ethyl Cellulose Guar gum and combination of the same. Tablets were prepared by direct compression method and both pre-compression and post- compression parameters for all batches shows in the acceptable ranges. Short term accelerated stability studies was performed according to ICH guidelines temperature of 400±20 and relative humidity of 75%±5% RH to study any physical changes and chemical decomposition of drug, no formulation shown any physical or chemical changes. The compatibility of drugs, polymers and excipients were determined by FT-IR Spectroscopy results showed that the drug was compatible with polymers and all excipients. Dissolution studies were performed for 12 hours study in 1.2 pH for first 2 hrs then in 7.4 pH for next 3hrs followed by 6.8pH phosphate buffer at the temperature of 37±0.50C at 100rpm. The dissolution data so obtained was fitted to various mathematical kinetic models and the drug release followed mixed order and Higuchi’s model. To study release mechanism of drug from matrices the data were fitted to Koresmeyer-Peppas model and the release. In –vitro release profile of Metformin HCl from various polymers showed that drug increasing the conc. of polymers resulted in reduction in the release rate of drug (MTF1 to MTF12). Formulation containing combination of E.C-G.G, HPMC-G.G and E.C-HPMC showed drug release profile for MTF-12 about 38.72% after 12 hrs, MTF-11 about 40.66% after 12 hrs, for MTF-10 about 45.45% after 12 hrs. This is an indicative of retardation of drug release when polymer combination was changed. Results showed that the tablets with higher binding concentration showed minimum drug release. Combination of polymers shows greater retarding of drug release.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Author(s):  
DHARMENDER PALLERLA ◽  
SUMAN BANOTH ◽  
SUNKARI JYOTHI

Objective: The objective of this study was to formulate and evaluate the Curcumin (CUR) encapsulated sodium alginate (SA)/badam gum (BG)/kaolin (KA) microbeads for controlled drug release studies. Methods: The fabricated microbeads were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD), and scanning electron microscopy (SEM). Dynamic swelling studies and in vitro release kinetics were performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results: FTIR confirms the formation of microbeads. DSC studies confirm the polymorphism of CUR in drug loaded microbeads which indicate the molecular level dispersion of the drug in the microbeads. SEM studies confirmed the microbeads are spherical in shape with wrinkled and rough surfaces. XRD studies reveal the molecular dispersion of CUR and the presence of KA in the developed microbeads. In vitro release studies and swelling studies depend on the pH of test media, which might be suitable for intestinal drug delivery. The % of drug release values fit into the Korsmeyer-Peppas equation and n values are obtained in the range of 0.577-0.664, which indicates that the developed microbeads follow the non-Fickian diffusion drug release mechanism. Conclusion: The results concluded that the CUR encapsulated microbeads are potentially good carriers for controlled drug release studies.


2019 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Khosro Adibkia ◽  
Solmaz Ghajar ◽  
Karim Osouli-Bostanabad ◽  
Niloufar Balaei ◽  
Shahram Emami ◽  
...  

Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.


Author(s):  
Naga sai divya K ◽  
T Malyadri ◽  
Ch.saibabu

The purpose of the present study was to develop and optimize the emulgel system for Luliconazole using different types of gelling agents: HPMCK15M, Carbopol 940, and Xanthan Gum. The prepared emulgels were evaluated in terms of appearance, pH, spreadability, viscosity, drug content, and in-vitro drug release. In-vitro release study demonstrated diffusion-controlled release of Luliconazole from formulation up to 12 hours. The drug release profile exhibited zero-order kinetics. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and higher drug release. In the case of all evaluation parameters, carbopol based formulation showed better properties so, as a general conclusion, it was suggested that the Luliconazole emulgel formulation prepared with carbopol (F6) was the formula of choice.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Fouad Damiri ◽  
Yahya Bachra ◽  
Chaimaa Bounacir ◽  
Asmae Laaraibi ◽  
Mohammed Berrada

In this study, chitosan-based hydrogels were produced by incorporating three drugs with a different solubility into a polymer matrix. The lyophilized chitosan salt was prepared using an innovative and less-expensive synthetic process by the freeze-drying technique. Firstly, the three drugs (caffeine, ascorbic acid, and 5-fluorouracil (5-FU)) were selected as model drugs to test the in vitro release behavior of the hydrogel. The drugs were solubilized in chitosan salt, lyophilized, and cross-linked with benzaldehyde involving the formation of a Schiff base with (–C=N-) linkage to produce a physical hydrogel. Subsequently, the physicochemical properties of N-benzyl chitosan and lyophilized chitosan salt were evaluated by Fourier-transform infrared (FTIR) spectra, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The intrinsic viscosity of the conventional chitosan was determined by the Mark–Houwink–Sakurada equation. Moreover, the kinetics of hydrogel swelling and drug release were studied by the UV-visible method at physiological conditions (pH = 7.4 at 37°C). The results show that lyophilized N-benzyl chitosan had a maximum swelling ratio of 720 ± 2% by immersion in phosphate-buffered saline solutions (PBS) (pH = 7.4 at 37°C). In vitro drug releases were evaluated in PBS, and the obtained results show that the maximum drug release after 24 h was 42% for caffeine, 99% for 5-FU, and 94% for ascorbic acid. Then, to optimize the cumulative release of caffeine, Tween 20 was added and 98% as a release percentage was obtained. The drug-loading results were investigated with the Korsmeyer–Peppas kinetic model and applied to determine the drug release mechanism.


2018 ◽  
Vol 18 (3) ◽  
pp. 438-449 ◽  
Author(s):  
Ziaeddin Abed ◽  
Samideh Khoei ◽  
Behafarid Ghalandari ◽  
Jaber Beik ◽  
Ali Shakeri-Zadeh ◽  
...  

Objective: To study the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. Also, the controlled drug-release behaviour of the nanocapsules was mathematically investigated. Methods: The nanocapsules were synthesized, dispersed in phosphate buffered saline (PBS), transferred to a dialysis bag, and finally, irradiated by various ultrasound parameters (1 or 3MHz; 0.3-1W/cm2; 5-10 minutes). The release profile of the irradiated nanocapsules was recorded for 14 days. To find the in vitro drug release mechanism in the absence and presence of various intensities of ultrasound, the obtained data were fitted in various kinetic models for drug release. Results: The results demonstrated that the ultrasound speeded up the rate of drug release from the nanocapsules. The mathematical analysis illustrated that when the ultrasound intensity is increased, the probability of controlled release behaviour of the nanocapsules is raised. We found that drug release from the irradiated nanocapsules follows an erosion-controlled mechanism with the decrease in the velocity of diffusion. Conclusion: In conclusion, to attain a controlled drug-delivery strategy in the area of cancer therapy, the drug release profile of the nano-carriers may be well-controlled by ultrasound.


2020 ◽  
Vol 18 ◽  
Author(s):  
Amaravathi Murali Krishna ◽  
Venkatesh Dinnekere Putte Gowda ◽  
Roopa Karki

Background: Nanosponges is a novel approach of topical drug delivery, especially for the fungal infections. Nanosponges are a unique class of nanoparticles with three-dimensional nanostructure in nanometers wide cavities, which can encapsulate both hydrophilic and lipophilic substances, will provide increased efficacy and safety. Objective: To formulate and evaluate Bifonazole loaded nanosponges in hydrogels for the treatment of fungal diseases. Methods: Bifonazole-loaded nanosponges to be formulated using emulsion solvent diffusion technique. Interaction of drugethyl cellulose polymer along with other excipients’ was done by using FTIR as well as DSC. The nanosponges formulations were evaluated with different parameters. Results: Bifonazole loaded nanosponges’ particle size and zeta potential for formulations were between the range of 183.7 to 560.2 nm and –17.77 to –21.9 mV, respectively. Surface morphology of nanosponges by SEM disclosed that it was spherical and porous in nature. Drug entrapment efficiency was found to be 45.44 to 79.71%. The drug release study was done by using phosphate buffer pH 6.8. Further in vitro release data is fitted in to kinetic models. The optimized formulation M6 has incorporated hydrogels, further evaluated skin irritation, in vitro drug release, viscosity and pH using a rat model. Stability studies of hydrogel formulation MH2 revealed that no changes in in-vitro drug release, pH and drug content study at the completion of 6 months. Conclusion: Thus, it indicated that the prepared Bifonazole loaded nanosponges into hydrogel was stable. Hence, it could be a suitable dosage form for the cure of fungal infections in the skin.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saeed Bazraee ◽  
Hamid Mobedi ◽  
Arezuo Mashak ◽  
Ahmad Jamshidi

Introduction: Typically, in situ forming implants utilize Poly (lactide-co-glycolide) (PLGA) as a carrier and N-methyl-2-pyrrolidone (NMP) as a solvent. However, it is essential to develop different carriers to release various drugs in a controlled and sustained manner with economic and safety considerations. Objective: The present study aims to evaluate the in-vitro release of Bupivacaine HCl from in situ forming systems as post-operative local anesthesia. Methods: We used Sucrose acetate isobutyrate (SAIB), PLGA 50:50, and a mixture of them as carriers to compare the release behavior. Besides, the effect of PLGA molecular weight (RG 502H, RG 503H, and RG 504H), solvent type, and solvent concentration on the drug release profile was evaluated. The formulations were characterized by investigating their in-vitro drug release, rheological properties, solubility, and DSC, in addition to their morphological properties. Furthermore, the Korsmeyer-Peppas and Weibull models were applied to the experimental data. The results revealed that a mixture of SAIB and PLGA compared to using them solely can extend the Bupivacaine HCl release from 3 days to two weeks. Results: The DSC results demonstrated the compatibility of the mixture by showing a single Tg. The formulation with NMP had a higher burst release and final release in comparison with other solvents by 30% and 96%, respectively. Increasing the solvent concentration from 12% to 32% raised the drug release significantly, which confirmed the larger porosity in the morphology results. From the Korsmeyer-Peppas model, the mechanism of drug release is predicted to be non-Fickian diffusion.


Sign in / Sign up

Export Citation Format

Share Document