scholarly journals Solar Energy and its Multiple Applications

Author(s):  
D.A. Wood

Solar energy is commercially exploited to provide benefits in the form of various products and capabilities applying a range of technologies. Electricity generation is achieved either directly from photovoltaic cells made of various materials or indirectly through the steam production from concentrating solar thermal systems. Whereas solar thermal power generation requires large scale plants, photovoltaic systems can be large or small in scale and building integrated, if required. Both types of generation can be standalone or connected to power grids. Solar energy is also extensively used for water and space heating, cooling and drying purposes. It can also be stored and/or transformed into a range of clean fuels and contributes energy to the manufacture of various energy-intensive products. The research into the artificial photosynthetic synthesis of biofuels although encouraging is, however, yet to be achieved commercially exploited on a large scale. Much scope remains for innovative technology breakthroughs to further improve the efficiency and uptake of all the solar energy technologies currently exploited or under investigation. Policy frameworks, renewable portfolio standards, feed-in tariffs and net-metering play an important and ongoing role in promoting the uptake of photovoltaics in particular.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Rongrong Zhai ◽  
Yongping Yang ◽  
Yong Zhu ◽  
Denggao Chen

Solar aided coal-fired power plants utilize various types of solar thermal energy for coupling coal-fired power plants by using the characteristics of various thermal needs of the plants. In this way, the costly thermal storage system and power generating system will be unnecessary while the intermittent and unsteady way of power generation will be avoided. Moreover, the large-scale utilization of solar thermal power and the energy-saving aim of power plants will be realized. The contribution evaluating system of solar thermal power needs to be explored. This paper deals with the evaluation method of solar contribution based on the second law of thermodynamics and the principle of thermoeconomics with a case of 600 MW solar aided coal-fired power plant. In this study, the feasibility of the method has been carried out. The contribution of this paper is not only to determine the proportion of solar energy in overall electric power, but also to assign the individual cost components involving solar energy. Therefore, this study will supply the theoretical reference for the future research of evaluation methods and new energy resource subsidy.


Author(s):  
Robert A. Taylor ◽  
Patrick E. Phelan ◽  
Todd P. Otanicar ◽  
Himanshu Tyagi ◽  
Steven Trimble

Concentrated solar energy is becoming the input for an increasing number of thermal systems [1]. Recent papers have indicated that the addition of nanoparticles to conventional working fluids (i.e. nanofluids) can improve heat transfer and solar collection [2–4]. Thermal models developed herein show that nanofluid collectors can be more efficient than conventional concentrating solar thermal technology. This work indicates that power tower schemes are the best application for taking advantage of potential nanofluid efficiency improvements. This study provides a notional design of how such a nanofluid power tower receiver might be built. Using this type of design, we show a theoretical enhancement in efficiency of up to a 10% by using nanofluids. Further, we compare the energy and revenue generated in a conventional solar thermal plant to a nanofluid one. It was found that a 100MWe capacity solar thermal power tower operating in a solar resource similar to Tucson, AZ could generate ∼$3.5 million more per year by incorporating a nanofluid receiver.


Author(s):  
Hans Mu¨ller-Steinhagen

On October 30th 2009, a major industrial consortium initiated the so-called DESERTEC project which aims at providing by 2050 15% of the European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. In the heart of this concept are solar thermal power plants which can provide affordable, reliable and dispatchable electricity. While this technology has been known for about 100 years, new developments and market introduction programs have recently triggered world-wide activities leading to the present project pipeline of 8.5 GW and 42 billion Euro. To become competitive with mid-load electricity from conventional power plants within the next 10–15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations which are presently in the development or even demonstration stage. The scale of construction, the high temperatures and the naturally transient operation provide formidable challenges for academic and industrial R&D. Experimental and theoretical research involving all mechanisms of heat transfer and fluid flow is required together with large-scale demonstration to resolve the combined challenges of performance and cost.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2152-2155

Solar thermal electric systems are simplest and hold promise of viability. Solar thermal systems have great similitude with conventional power system. In this paper we present an overview of various solar thermal power technologies to evolve criteria for selection of best systems.


Solar Energy ◽  
2003 ◽  
Author(s):  
L. A. Stoynov ◽  
Prasad K. D. V. Yarlagadda

Almost all life on Earth has been using solar energy in many ways, but when high temperatures are desired, concentration of the incident solar radiation (insolation) becomes necessary. The present work is an attempt to improve and experimentally compare alternative beam delivering and focusing energy systems of a small solar concentrator. The researched solar energy concentrator (SEC) facility consists of modified two mirror Cassegrainian solar concentrator, two-speed sun-tracking manual and automatic control, concentrated insolation transmitting and continuous beam focusing systems. A number of system modifications during the development of the two stage, point focusing type solar concentrator arrangement for solar thermal power utilization have also been explored and are reported in this paper. Some of the experimental testing results obtained using single polymer fiber 14 mm in diameter, a truncated conical concentrator, and auxiliary lens system alternatives, have been compared. In addition, some details about various improvements of the sun-tracking sensor and automatics, beam transmission and continuous focusing capabilities of the SEC facility have been described.


Author(s):  
William K. Gboney

It is estimated that within the next 40 years, solar thermal power plants would be capable of supplying more than half of the electricity needs of EUMENA. While solar irradiance differs widely in Europe due to seasonal variations, in the MENA region, there is abundant and continuous solar irradiance. This make the MENA region suitable for establishing CSP plants and exporting the electricity generated to Europe. This has driven many institutions and agencies, including the World Bank and the Desertec Foundation, to propose various schemes to promote the use of CSP systems in the MENA region. The objective of this paper is to examine the existing policy and regulatory frameworks in the MENA countries, identify any barriers and make recommendations on how to surmount these barriers, to increase the scale and scope of utilizing CSPs and other renewable energy technologies (RETs) in the region. The paper concludes by making a number of policy and regulatory recommendations to support utilization of solar thermal energy resource within the MENA region.


Sign in / Sign up

Export Citation Format

Share Document