scholarly journals Bio-Mediated Synthesis of Nanomaterials for Electrochemical Sensor Applications

The bio-mediated nanomaterials have expected growing responsiveness due to an increasing requirement to develop naturally nonthreatening technologies in nanomaterial synthesis. Biotic ways to prepare nanomaterials through extracts from the plant (includes stems, leaves, flowers, and roots) and microorganisms were recommended as likely replacements for physical and chemical routes due to their solvent medium and environment eco-friendliness and nontoxicity. This chapter focuses on electrocatalyst prepared by various bio-mediated synthetic ways and used as a green and eco-friendly electrocatalyst to recognize extensive chemical and biologically essential molecules with improved selectivity and sensitivity with low detection limit. The bio-mediated nanocomposite formation processes and their unique properties surface functionalization and electron transfer mechanism discussed in connection with the design and fabrication of sensors. As a final point, the encounters and prospects in developing bio-mediated nanomaterials-based electrochemical sensing technology was outlined.

Author(s):  
Jingwen Pan ◽  
Baoyu Gao ◽  
Pijun Duan ◽  
Kangying Guo ◽  
Muhammad Akram ◽  
...  

Nonradical pathway-based persulfate oxidation technology is considered to be a promising method for high-salinity organic wastewater treatment.


Monoelements ◽  
2020 ◽  
pp. 169-233
Author(s):  
Anantharaman Shivakumar ◽  
Honnur Krishna

2008 ◽  
Vol 07 (03) ◽  
pp. 435-446 ◽  
Author(s):  
PING LI ◽  
XIAOYAN XIE ◽  
YUXIANG BU ◽  
WEIHUA WANG ◽  
NANA WANG ◽  
...  

The coupling interactions and self-exchange reaction mechanisms between NO and ONH (NOH) have been systematically investigated at the B3LYP/6-311++G** level of theory. All the equilibrium complexes are characterized by the intermolecular H-bonds and co-planar geometries. The cisoid NOH/ON species is the most stable one among all the complexes considered due to the formation of an N – N bond. Moreover, all the cisoid complexes are found to be more stable than the corresponding transoid ones. The origin of the blueshifts occurring in the selected complexes has been explored, employing the natural bond orbital (NBO) calculations. Additionally, the proton transfer mechanisms for the self-exchange reactions have been proposed, i.e. they can proceed via the three-center proton-coupled electron transfer or five-center cyclic proton-coupled electron transfer mechanism.


1977 ◽  
Vol 32 (12) ◽  
pp. 1561-1563 ◽  
Author(s):  
M. Zander

Abstract Fluorescence Quenching of Alternant and Non-alternant Polycyclic Hydrocarbons by Nitro Compounds Fluorescence quenching of polycyclic aromatic hydro­ carbons by nitromethane or nitrobenzene in fluid solutions is due to an electron transfer mechanism. The non diffusion controlled rate constant of quenching is very much greater for alternant than for non-alternant hydrocarbons with equal singlet excitation energy. This is explained by the known more positive reduction potential of non-alternant compared to alternant hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document