Evaluation of Disinfection Efficacy by a Green Fluorescent Protein (GFP) Reporter System

2011 ◽  
Vol 2011 (3) ◽  
pp. 243-248
Author(s):  
Ting Lu ◽  
Yanping Chen ◽  
Jorge W. Santo Domingo ◽  
Daniel B. Oerther
Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1819-1828 ◽  
Author(s):  
James A. Carroll ◽  
Philip E. Stewart ◽  
Patricia Rosa ◽  
Abdallah F. Elias ◽  
Claude F. Garon

Borrelia burgdorferi regulates genes in response to a number of environmental signals such as temperature and pH. A green fluorescent protein (GFP) reporter system using the ospC, ospA and flaB promoters from B. burgdorferi B31 was introduced into infectious clonal isolates of strains B31 and N40 to monitor and compare gene expression in response to pH and temperature in vitro. GFP could be assayed by epifluorescence microscopy, immunoblotting or spectrofluorometry and was an accurate reporter of target gene expression. It was determined that only 179 bp 5′ of ospC was sufficient to regulate the reporter gfp in vitro in response to pH and temperature in B. burgdorferi B31. The loss of linear plasmid (lp) 25, lp28-1, lp36 and lp56 had no effect on the ability of B. burgdorferi B31 to regulate ospC in response to pH or temperature. The amount of OspC in N40 transformants was unaffected by changes in pH or temperature of the culture medium. This suggests that regulation of gene expression in response to pH and temperature may vary between these two B. burgdorferi strains.


2009 ◽  
Vol 76 (3) ◽  
pp. 978-981 ◽  
Author(s):  
Ana Belén Campelo ◽  
Ana Rodríguez ◽  
Beatriz Martínez

ABSTRACT A Lactococcus lactis reporter system suitable to detect cell envelope stress in high-throughput settings was developed by fusing the CesR-regulated promoter of llmg0169 to the gfpuv gene. A dot blot assay allowed fast detection of green fluorescent protein (GFP) fluorescence even at low production levels. Unexpectedly, this promoter was also induced by mitomycin C via CesR.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2269 ◽  
Author(s):  
Bat-Erdene Jugder ◽  
Jeffrey Welch ◽  
Nady Braidy ◽  
Christopher P. Marquis

Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2is a soluble [Ni–Fe] uptake hydrogenase (SH) produced byCupriavidus necatorH16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSHpromoter activity using several gene cloning approaches. A PSHpromoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSHpromoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinantC. necatorH16 cells. Here we report the first successful fluorescent reporter system to study PSHpromoter activity inC. necatorH16. The fusion construct allowed for the design of a simple screening assay to evaluate PSHactivity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.


2005 ◽  
Vol 71 (5) ◽  
pp. 2338-2346 ◽  
Author(s):  
Anders Norman ◽  
Lars Hestbjerg Hansen ◽  
Søren J. Sørensen

ABSTRACT Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 μM, 1.1 μM, and 141 μM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.


Sign in / Sign up

Export Citation Format

Share Document