scholarly journals The Potency of UB Forest Chitinolytic Bacteria to Promote Plant Growth and Inhibit Damping off Disease on Soybean

2021 ◽  
Vol 8 (1) ◽  
pp. 25-33
Author(s):  
Achmad Roekhan ◽  
Ayu Ike Dayanti ◽  
Rahmania Oktaviani ◽  
Fibrianti Shinta ◽  
Nabilla Alya Anastasia ◽  
...  

Damping off disease in soybean plants is caused by the fungal Rhizoctonia solani. The damping off disease causes a yield loss of up to 85-100%. The purpose of this study was determining the ability chitinolytic bacteria consortium of UB Forest's in suppressing damping off disease in vitro and in vivo as well as its potential to stimulate the growth of soybean plants. The research stages included isolation of the pathogenic fungus R. solani and the pathogenicity test. Rejuvenation chitinolytic bacterial isolates of UB Forest, test chitinolytic bacteria antagonist of UB Forest against R. solani fungus, test of Plant Growth Promoting (PGP) activities, synergy test of selected chitinolytic bacterial isolates, in vitro test for the inhibition of chitinase crude extract against R. solani, and inhibition test of chitinolytic bacteria consortium against damping off disease. The selected chitinolytic bacteria were code bacteria UB12, UB19, and UB52 with plant growth promoting activities with inhibition percentage of the pathogen R. solani of 73.9%, 67.4%, and 71.7%. The best chitinolytic bacterial isolates were the genus Bacillus sp. and Pseudomonas sp. The inhibition test of chitinase crude extract showed an inhibition percentage of 25-55%.

2021 ◽  
Vol 5 (2) ◽  
pp. 65
Author(s):  
Anderson Emmer ◽  
João Arthur Dos Santos Oliveira ◽  
Andressa Domingos Polli ◽  
Julio Cesar Polonio ◽  
Leonardo Hamamura Alves ◽  
...  

Echeveria laui (Crassulaceae) is commonly commercialized due to its drought-tolerance capacity and to its rosette-shaped aesthetics. Since endophytes associated with plants from a dry or arid environment have scarcely been analyzed as yet, current research comprises the isolation of leaf endophytic bacteria from E. laui (one five-year-old and one two-year-old plants) investigating plant growth-promoting endophytic bacteria which may solubilize phosphate, fix nitrogen, produce exopolysaccharides/IAA and antagonize phytopathogens. Isolation by the maceration methodology provided a colonization rate of 1.98 x109 CFU g-1 for the two-year-old plant and 1.14 x 1010 CFU g-1 for the five-year-old one. All 40 isolates evaluated showed in vitro plant growth-promoting agent’s abilities, with emphasis on EG04, ELG18, and ELP06.  The capacity of the three best bacterial isolates were evaluated under greenhouse conditions in common and black bean (Phaseolus vulgaris L.) plants. Based on the sequencing of the 16S rRNA region and phylogenetic analysis, the three endophytes were identified as Pantoea sp. (ELG04 and ELG18) and Erwinia sp. (ELP06). Under greenhouse conditions, statistically significant differences were found among the plants treated with the three endophytes when compared to control plants for fresh and dry shoot, root biomass and length.


2021 ◽  
pp. 47-58
Author(s):  
Tulja Sanam ◽  
S. Triveni ◽  
J. Satyanaryana ◽  
Sridhar Goud Nerella ◽  
K. Damodara Chari ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) contribute to an increase in crop yield through an environmentally friendly method, therefore eight rhizospheric bacteria, two of each genera Bacillus, Pseudomonas, Azotobacter and Azospirillum were examined for their efficacy to solubilize mineral nutrients using atomic absorption spectrophotometry and a flame photometer. Their potency to produce phytohormones, synthesis biocontrol components and their compatibility with pesticides using in vitro assays was studied. All of the chosen bacterial isolates proved positive for the above-mentioned Plant Growth Promoting traits. Among the eight bacterial isolates Pseudomonas isolate P69 showed the highest phosphorous solubilization efficiency of 190.91 % and another isolate P48 produced a maximum of 27.63µg mL-1 of gibberellic acid, Bacillus isolate B120 could solubilize maximum amount of ZnO and ZnCO3 accounting for 21.3ppm and 25.9ppm, respectively, not merely in terms of solubilization when compared to the other isolates, B120 produced the highest levels of HCN (77.33 ppm TCC) and siderophores (48.87psu). On day 9 after inoculation, Azotobacter isolate AZB17 performed effectively in potassium solubilization of 6.25g mL-1 with a pH drop to 3.83. The Azospirillum isolate ASP25 outperformed all other isolates in terms of IAA production (22.64g mL-1) and Bacillus isolate B365 was found to be more compatible with eight different pesticides used in the field at varying concentrations. All of these factors point to the possibility of using these bacterial isolates B120, P48, P69, AZB17, and ASP25 as biofertilizers in sustainable agriculture.


2020 ◽  
Vol 25 (2) ◽  
pp. 22
Author(s):  
Rethinasamy Velazhahan ◽  
Shima Nasser Hamed Al-Mamari ◽  
Abdullah Mohammed Al-Sadi ◽  
Issa Hashil Al-Mahmooli ◽  
S. P. Sathish Babu

Spent mushroom substrate (SMS) is widely used as fertilizer and to control plant diseases. The microorganisms surviving in SMS play a crucial role in plant growth promotion and biocontrol properties of SMS. In this study, an effort was made to isolate and characterize the bacterial species present in the SMS of Agaricus bisporus and to study their antagonistic potential, plant growth-promoting ability and indole-3-acetic acid (IAA) producing trait. Six different bacterial isolates exhibiting morphological variabilities were obtained from the SMS by serial dilution technique. On the basis of 16S rRNA gene sequences, these isolates were identified as Staphylococcus epidermidis (Sh1 and Sh3), S. aureus (Sh2), Bacillus albus (Sh4), Delftia lacustris (Sh6) and Comamonas aquatica (Sh7). These bacterial strains were assayed for their antagonism against Pythium aphanidermatum, a phytopathogenic oomycete. The results of in vitro dual culture assay revealed that all the 6 bacterial isolates showed low levels of suppression of P. aphanidermatum and recorded less than 5 mm inhibition zone. Among the bacterial isolates, S. epidermidis Sh3 recorded the maximum inhibition zone of 4.2 mm. Plant growth promotion test using roll paper towel method revealed that C. aquatica Sh7, B. albus Sh4, D. lacustris Sh6 and S. epidermidis Sh3 caused a significant increase in seedling vigour of cucumber compared to control. The seeds treated with the bacterial isolate C. aquatica Sh7 showed the maximum seedling vigor. Assessment of in vitro production of IAA by the bacterial isolates revealed that the bacterial isolates highly varied (ranging from 0.28 to 9.25 mg L-1) in their potential for production of IAA. The maximum amount of IAA was produced by C. aquatica Sh7 (9.25 mg L-1), while the minimum was produced by S. epidermidis Sh1 (0.28 mg L-1).


2017 ◽  
Vol 107 (8) ◽  
pp. 928-936 ◽  
Author(s):  
Ke Liu ◽  
Molli Newman ◽  
John A. McInroy ◽  
Chia-Hui Hu ◽  
Joseph W. Kloepper

A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.


1991 ◽  
Vol 37 (7) ◽  
pp. 521-529 ◽  
Author(s):  
Susan J. Grayston ◽  
James J. Germida

Canola (Brassica napus) has a high sulfur requirement during vegetative growth and exhibits symptoms of sulfur deficiency when cropped on Saskatchewan soils low in plant available sulfur. Elemental sulfur (S0) is frequently used as a fertilizer to alleviate this deficiency. The potential of sulfur-oxidizing microorganisms to enhance the growth of canola in S0 fertilized soils was assessed. Sulfur-oxidizing bacteria and fungi were isolated from the rhizosphere and rhizoplane of canola grown in four different Saskatchewan soils under growth chamber conditions. Of 273 bacterial isolates, 245 (89.7%) oxidized S0 to thiosulfate or tetrathionate in vitro, and 133 (48.7%) oxidized S0 to sulfate; 70 fungal isolates oxidized S0 to sulfate. Eighteen bacterial isolates demonstrating the highest in vitro sulfur oxidation were tested as seed inoculants under growth chamber conditions, with S0 as sulfur source. Fourteen isolates increased canola leaf size measured at the bud stage of growth, and seven isolates increased root and pod dry weights at maturity. Three of the 14 isolates were also able to stimulate canola leaf area in the presence of plant available sulfate. The shoot material from canola inoculated with two of these isolates contained more iron, sulfur, and magnesium than uninoculated canola. Three of the 14 isolates inhibited the growth of the canola fungal pathogens, Rhizoctonia solani AG2-1, R. solani AG4, and Leptosphaeria maculans "Leroy." Another isolate was antagonistic towards both R. solani strains and another inhibited the growth of R. solani AG2-1 and L. maculans "Leroy." Thus some sulfur-oxidizing isolates appear to stimulate canola growth due to the enhancement of mineral nutrient uptake, whereas in other cases antibiosis towards canola pathogens may also be involved. Key words: elemental sulfur, oxidation, canola, rhizosphere, plant growth promoting rhizobacteria.


2021 ◽  
Author(s):  
Maria Swiontek Brzezinska ◽  
Joanna Świątczak ◽  
Anna Wojciechowska ◽  
Aleksandra Burkowska-But ◽  
Agnieszka Kalwasińska

Abstract Development of a preparation, which stimulates plant growth under normal and saline conditions, and protects against fungal infections, would increase crop yields and reduce damage in agriculture. This study was conducted using bacterial isolates from rape rhizosphere as a plant growth promoter and an alternative to chemical fertilizers. Three from fifty bacterial isolates: B14 (Pseudomonas grimontii), B16 (Sphingobacterium kitahiroshimense), and B19 (Microbacterium oxydans) showed the best in vitro plant growth – promoting (PGP) characteristics. B14 strain inhibited the growth of B. cinerea, C. acutatum, and P. lingam and B14 - inoculated plants had the best ability to grow in salt concentrations of 100 mM NaCl. Moreover, B14, B16 and B19 isolates coded for several genes involved in PGP activities, aimed at improving nutrient availability, resistance to abiotic stress, and fungal pathogen suppression. Microbial consortium (B14, B16, and B19) had the best effect on rape growth, significantly increasing chlorophyll content index, shoot length and number of live leaves, compared to the untreated control and single inoculant treatments. Consortium also induced the plants tolerance to salt stress. The genomic information as well as the observed traits, and beneficial attributes towards rape, make the rhizobacterial consortium an ideal candidate for further development as biofertilizers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.


2021 ◽  
Vol 9 (8) ◽  
pp. 1588
Author(s):  
Anastasia Venieraki ◽  
Styliani N. Chorianopoulou ◽  
Panagiotis Katinakis ◽  
Dimitris L. Bouranis

Plant growth promoting rhizobacteria (PGPR) can be functional microbial fertilizers and/or biological control agents, contributing to an eco-spirit and safe solution for chemical replacement. Therefore, we have isolated rhizospheric arylsulfatase (ARS)-producing bacteria, belonging to Pseudomonas and Bacillus genus, from durum wheat crop grown on calcareous soil. These isolates harbouring plant growth promoting (PGP) traits were further evaluated in vitro for additional PGP traits, including indole compounds production and biocontrol activity against phytopathogens, limiting the group of multi-trait strains to eight. The selected bacterial strains were further evaluated for PGP attributes associated with biofilm formation, compatibility, salt tolerance ability and effect on plant growth. In vitro studies demonstrated that the multi-trait isolates, Bacillus (1.SG.7, 5.SG.3) and Pseudomonas (2.SG.20, 2.C.19) strains, enhanced the lateral roots abundance and shoots biomass, mitigated salinity stress, suggesting the utility of beneficial ARS-producing bacteria as potential microbial fertilizers. Furthermore, in vitro studies demonstrated that compatible combinations of multi-trait isolates, Bacillus sp. 1.SG.7 in a mixture coupled with 5.SG.3, and 2.C.19 with 5.SG.3 belonging to Bacillus and Pseudomonas, respectively, may enhance plant growth as compared to single inoculants.


Sign in / Sign up

Export Citation Format

Share Document