scholarly journals Incompatible Ω-Complete Theories

2009 ◽  
Vol 74 (4) ◽  
pp. 1155-1170 ◽  
Author(s):  
Peter Koellner ◽  
W. Hugh Woodin

AbstractIn 1985 the second author showed that if there is a proper class of measurable Woodin cardinals and and are generic extensions of V satisfying CH then and agree on all Σ12-statements. In terms of the strong logic Ω-logic this can be reformulated by saying that under the above large cardinal assumption ZFC + CH is Ω-complete for Σ12. Moreover, CH is the unique Σ12-statement with this feature in the sense that any other Σ12-statement with this feature is Ω-equivalent to CH over ZFC. It is natural to look for other strengthenings of ZFC that have an even greater degree of Ω-completeness. For example, one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for all of third-order arithmetic. Going further, for each specifiable segment Vλ of the universe of sets (for example, one might take Vλ to be the least level that satisfies there is a proper class of huge cardinals), one can ask for recursively enumerable axioms A such that relative to large cardinal axioms ZFC + A is Ω-complete for the theory of Vλ. If such theories exist, extend one another, and are unique in the sense that any other such theory B with the same level of Ω-completeness as A is actually Ω-equivalent to A over ZFC, then this would show that there is a unique Ω-complete picture of the successive fragments of the universe of sets and it would make for a very strong case for axioms complementing large cardinal axioms. In this paper we show that uniqueness must fail. In particular, we show that if there is one such theory that Ω-implies CH then there is another that Ω-implies ¬-CH.

2009 ◽  
Vol 74 (2) ◽  
pp. 641-654 ◽  
Author(s):  
Andrew D. Brooke-Taylor

AbstractWe use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle , at a proper class of cardinals κ. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any non-trivial master conditions.


2000 ◽  
Vol 6 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Ralf-Dieter Schindler

The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found one of its culminations in the theorem, due to Martin, Steel, and Woodin, that the existence of infinitely many Woodin cardinals with a measurable cardinal above them all implies that AD, the axiom of determinacy, holds in the least inner model containing all the reals, L(ℝ) (cf. [6[, p. 91). One of the nice things about AD is that the theory ZF + AD + V = L(ℝ) appears as a choiceless “completion” of ZF in that any interesting question (in particular, about sets of reals) seems to find an at least attractive answer in that theory (cf., for example, [5] Chap. 6). (Compare with ZF + V = L!) Beyond that, AD is very canonical as may be illustrated as follows.Let us say that L(ℝ) is absolute for set-sized forcings if for all posets P ∈ V, for all formulae ϕ, and for all ∈ ℝ do we have thatwhere is a name for the set of reals in the extension.


2004 ◽  
Vol 69 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Sy D. Friedman

In this article we study the strength of absoluteness (with real parameters) in various types of generic extensions, correcting and improving some results from [3]. (In particular, see Theorem 3 below.) We shall also make some comments relating this work to the bounded forcing axioms BMM, BPFA and BSPFA.The statement “ absoluteness holds for ccc forcing” means that if a formula with real parameters has a solution in a ccc set-forcing extension of the universe V, then it already has a solution in V. The analogous definition applies when ccc is replaced by other set-forcing notions, or by class-forcing.Theorem 1. [1] absoluteness for ccc has no strength; i.e., if ZFC is consistent then so is ZFC + absoluteness for ccc.The following results concerning (arbitrary) set-forcing and class-forcing can be found in [3].Theorem 2 (Feng-Magidor-Woodin). (a) absoluteness for arbitrary set-forcing is equiconsistent with the existence of a reflecting cardinal, i.e., a regular cardinal κ such that H(κ) is ∑2-elementary in V.(b) absoluteness for class-forcing is inconsistent.We consider next the following set-forcing notions, which lie strictly between ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving and ω1-preserving. We refer the reader to [8] for the definitions of these forcing notions.Using a variant of an argument due to Goldstern-Shelah (see [6]), we show the following. This result corrects Theorem 2 of [3] (whose proof only shows that if absoluteness holds in a certain proper forcing extension, then in L either ω1 is Mahlo or ω2 is inaccessible).


Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


1981 ◽  
Vol 46 (1) ◽  
pp. 59-66
Author(s):  
A. Kanamori

This paper continues the study of κ-ultrafilters over a measurable cardinal κ, following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much of the concern will be with p-point κ-ultrafilters, which have become a focus of attention because they epitomize situations of further complexity beyond the better understood cases, normal and product κ-ultrafilters.For any κ-ultrafilter D, let iD: V → MD ≃ Vκ/D be the elementary embedding of the universe into the transitization of the ultrapower by D. Situations of U < RKD will be exhibited when iU(κ) < iD(κ), and when iU(κ) = iD(κ). The main result will then be that if the latter case obtains, then there is an inner model with two measurable cardinals. (As will be pointed out, this formulation is due to Kunen, and improves on an earlier version of the author.) Incidentally, a similar conclusion will also follow from the assertion that there is an ascending Rudin-Keisler chain of κ-ultrafilters of length ω + 1. The interest in these results lies in the derivability of a substantial large cardinal assertion from plausible hypotheses on κ-ultrafilters.


1994 ◽  
Vol 59 (2) ◽  
pp. 461-472
Author(s):  
Garvin Melles

Mathematicians have one over on the physicists in that they already have a unified theory of mathematics, namely, set theory. Unfortunately, the plethora of independence results since the invention of forcing has taken away some of the luster of set theory in the eyes of many mathematicians. Will man's knowledge of mathematical truth be forever limited to those theorems derivable from the standard axioms of set theory, ZFC? This author does not think so, he feels that set theorists' intuition about the universe of sets is stronger than ZFC. Here in this paper, using part of this intuition, we introduce some axiom schemata which we feel are very natural candidates for being considered as part of the axioms of set theory. These schemata assert the existence of many generics over simple inner models. The main purpose of this article is to present arguments for why the assertion of the existence of such generics belongs to the axioms of set theory.Our central guiding principle in justifying the axioms is what Maddy called the rule of thumb maximize in her survey article on the axioms of set theory, [8] and [9]. More specifically, our intuition conforms with that expressed by Mathias in his article What is Maclane Missing? challenging Mac Lane's view of set theory.


1971 ◽  
Vol 36 (3) ◽  
pp. 407-413 ◽  
Author(s):  
Kenneth Kunen

One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.


2017 ◽  
Vol 82 (3) ◽  
pp. 1106-1131 ◽  
Author(s):  
PHILIPP LÜCKE ◽  
RALF SCHINDLER ◽  
PHILIPP SCHLICHT

AbstractWe study Σ1(ω1)-definable sets (i.e., sets that are equal to the collection of all sets satisfying a certain Σ1-formula with parameter ω1 ) in the presence of large cardinals. Our results show that the existence of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1(ω1)-definable, the set of all stationary subsets of ω1 is not Σ1(ω1)-definable and the complement of every Σ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$ is not Σ1(ω1)-definable. In contrast, we show that the existence of a Woodin cardinal is compatible with the existence of a Σ1(ω1)-definable well-ordering of H(ω2) and the existence of a Δ1(ω1)-definable Bernstein subset of ${}_{}^{{\omega _1}}\omega _1^{}$. We also show that, if there are infinitely many Woodin cardinals and a measurable cardinal above them, then there is no Σ1(ω1)-definable uniformization of the club filter on ω1. Moreover, we prove a perfect set theorem for Σ1(ω1)-definable subsets of ${}_{}^{{\omega _1}}\omega _1^{}$, assuming that there is a measurable cardinal and the nonstationary ideal on ω1 is saturated. The proofs of these results use iterated generic ultrapowers and Woodin’s ℙmax-forcing. Finally, we also prove variants of some of these results for Σ1(κ)-definable subsets of κκ, in the case where κ itself has certain large cardinal properties.


1981 ◽  
Vol 46 (2) ◽  
pp. 377-384 ◽  
Author(s):  
Julia F. Knight

This paper is concerned with algebraic independence in structures that are relatively simple for their size. It is shown that for κ a limit cardinal, if a structure of power at least κ is ∞ω-equivalent to a structure of power less than κ, then must contain an infinite set of algebraically independent elements. The same method of proof yields the fact that if σ is an Lω1ω-sentence (not necessarily complete) and σ has a model of power ℵω then some model of σ contains an infinite algebraically independent set.All structures are assumed to be of countable similarity type. Letters , etc. will be used to denote either a structure or the universe of the structure. If X ⊆ , the algebraic closure of X (in ), denoted by Cl(X), is the union of all finite sets that are weakly definable (in ) by Lωω-formulas with parameters from X. A set S is algebraically independent if for each a in S, a ∉ Cl(S – {a}). An algebraically independent set is sometimes called a “free” set (in [3] and [4], for example).It is known (see [5]) that any structure of power ℵn must have a set of n algebraically independent elements, and there are structures of power ℵn with no independent set of size n + 1. In power ℵω every structure will have arbitrarily large finite algebraically independent sets. However, it is consistent with ZFC that some models of power ℵω do not have any infinite algebraically independent set. Devlin [4] showed that if V = L, then for any cardinal κ, if every structure of power κ has an infinite algebraically independent set, then κ has a certain large cardinal property that ℵω can never possess.


1974 ◽  
Vol 39 (2) ◽  
pp. 254-268 ◽  
Author(s):  
William Boos

The results that follow are intended to be understood as informal counterparts to formal theorems of Zermelo-Fraenkel set theory with choice. Basic notation not explained here can usually be found in [5]. It will also be necessary to assume a knowledge of the fundamentals of boolean and generic extensions, in the style of Jech's monograph [3]. Consistency results will be stated as assertions about the existence of certain complete boolean algebras, B, C, etc., either outright or in the sense of a countable standard transitive model M of ZFC augmented by hypotheses about the existence of various large cardinals. Proofs will usually be phrased in terms of the forcing relation ⊩ over such an M, especially when they make heavy use of genericity. They are then assertions about Shoenfield-style P-generic extensions M(G), in which the ‘names’ are required without loss of generality to be elements of MB = (VB)M, B is the boolean completion of P in M (cf. [3, p. 50]: the notation there is RO(P)), the generic G is named by Ĝ ∈ MB such that (⟦p ∈ Ĝ⟧B = p and (cf. [11, p. 361] and [3, pp. 58–59]), and for p ∈ P and c1, …, cn ∈ MB, p ⊩ φ(c1, …, cn) iff ⟦φ(c1, …, cn)⟧B ≥ p (cf. [3, pp. 61–62]).Some prior acquaintance with large cardinal theory is also needed. At this writing no comprehensive introductory survey is yet in print, though [1], [10], [12]and [13] provide partial coverage. The scheme of definitions which follows is intended to fix notation and serve as a glossary for reference, and it is followed in turn by a description of the results of the paper. We adopt the convention that κ, λ, μ, ν, ρ and σ vary over infinite cardinals, and all other lower case Greek letters (except χ, φ, ψ, ϵ) over arbitrary ordinals.


Sign in / Sign up

Export Citation Format

Share Document