scholarly journals Recent update on the environmental impact of geopolymers

2016 ◽  
Vol 1 ◽  
pp. 17 ◽  
Author(s):  
Guillaume Habert ◽  
Claudiane Ouellet-Plamondon

The contribution of building materials’ production to environmental impacts becomes significant in the new energy efficient buildings that are currently built. Among those materials, cement represents a major part of the embodied carbon footprint of buildings. Development of alternatives to traditional Portland cement have emerged over the last decades; however, their environmental assessment over their life cycle have resulted in conflicting results, which give a confusing picture of the strategic path to be followed. This paper focuses on the alkali-activated cement and concrete and points out the variability linked with the choice of energy source for the production of the activators and precursors. A review of existing studies is then performed in order to highlight the main benefits of these alternative cements in terms of reduction of greenhouse gas emissions. Finally, the results presented here highlight further research trends for new cements and concrete.

2016 ◽  
Vol 1 ◽  
pp. 17 ◽  
Author(s):  
Guillaume Habert ◽  
Claudiane Ouellet-Plamondon

The contribution of building materials’ production to environmental impacts becomes significant in the new energy efficient buildings that are currently built. Among those materials, cement represents a major part of the embodied carbon footprint of buildings. Development of alternatives to traditional Portland cement have emerged over the last decades; however, their environmental assessment over their life cycle have resulted in conflicting results, which give a confusing picture of the strategic path to be followed. This paper focuses on the alkali-activated cement and concrete and points out the variability linked with the choice of energy source for the production of the activators and precursors. A review of existing studies is then performed in order to highlight the main benefits of these alternative cements in terms of reduction of greenhouse gas emissions. Finally, the results presented here highlight further research trends for new cements and concrete.


2021 ◽  
Vol 03 (04) ◽  
pp. 70-78
Author(s):  
Tulakov Elmurad Salomovich ◽  
◽  
Matyokubov Bobur Pulatovich ◽  

If the surface temperature of any building material drops sharply without changing the humidity and the surface temperature is lower than the dew point temperature, dew-like water droplets are formed on the surface of this material. This condition is called condensing humidity condition. Condensation moisture formed on the surfaces of building materials and external barriers is slowly absorbed into the body of building materials over time, increasing the relative humidity of this structure. Condensation moisture can be observed when the temperature of the surfaces of external barrier structures drops sharply. This condition can be observed everywhere where the basement is connected to the outer walls of the basement. The article deals with the issue of thermal insulation and calculation of basement walls of modern energy-efficient buildings, which are widely used in the country and abroad.


2020 ◽  
Vol 12 (14) ◽  
pp. 5666 ◽  
Author(s):  
Girts Bumanis ◽  
Laura Vitola ◽  
Ina Pundiene ◽  
Maris Sinka ◽  
Diana Bajare

To decrease the environmental impact of the construction industry, energy-efficient insulation materials with low embodied production energy are needed. Lime-hemp concrete is traditionally recognized as such a material; however, the drawbacks of this type of material are associated with low strength gain, high initial moisture content, and limited application. Therefore, this review article discusses alternatives to lime-hemp concrete that would achieve similar thermal properties with an equivalent or lower environmental impact. Binders such as gypsum, geopolymers, and starch are proposed as alternatives, due to their performance and low environmental impact, and available research is summarized and discussed in this paper. The summarized results show that low-density thermal insulation bio-composites with a density of 200–400 kg/m3 and thermal conductivity (λ) of 0.06–0.09 W/(m × K) can be obtained with gypsum and geopolymer binders. However, by using a starch binder it is possible to produce ecological building materials with a density of approximately 100 kg/m3 and thermal conductivity (λ) as low as 0.04 W/(m × K). In addition, a preliminary life cycle assessment was carried out to evaluate the environmental impact of reviewed bio-composites. The results indicate that such bio-composites have a low environmental impact, similar to lime-hemp concrete.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


Author(s):  
Andrea Moňoková ◽  
Silvia Vilčeková

Increasing concerns about negative environmental impacts of building structures call for higher demands on the design of environmental friendly buildings. This article is aimed at assessing the overall environmental impact of buildings throughout its life cycle as well as on environmental impact of all building materials and building services for single-family homes. This analysis examines the role of utilized green environmental technologies for the following selected impact categories: GWP - global warming potential, EP - eutrophication potential, AP - acidification potential POCP and photochemical ozone formation potential expressed in kg CO2eq, PO43-eq, SO2eq and ethylene within the “Cradle to gate with options” boundary. The LCA assessment methodology and eToolLCD software have been used to model the effects of houses’ life cycle.


2020 ◽  
Vol 12 (16) ◽  
pp. 6372
Author(s):  
Christine Eon ◽  
Jessica K. Breadsell ◽  
Joshua Byrne ◽  
Gregory M. Morrison

Energy efficient buildings are viewed as one of the solutions to reduce carbon emissions from the built environment. However, studies worldwide indicate that there is a significant gap between building energy targets (as-designed) and the actual measured building energy consumption (as-built). Several underlying causes for the energy performance gap have been identified at all stages of the building life cycle. Focus is generally on the post-occupancy stage of the building life cycle. However, issues relating to the construction and commissioning stages of the building are a major concern, though not usually researched. There is uncertainty on how to address the as-designed versus as-built gap. The objective of this review article is to identify causes for the energy performance gap in buildings in relation to the post-design and pre-occupancy stages and review proposed solutions. The methodology applied in this research is the rapid review, which is a variant of the systematic literature review method. Findings suggest that causes for discrepancies between as-designed and as-built energy performance during the construction and commissioning stages relate to a lack of knowledge and skills, lack of communication between stakeholders and a lack of accountability for building performance post-occupancy. Recommendations to close this gap during this period include better training, improved communication standards, collaboration, energy evaluations based on post-occupancy performance, transparency of building performance, improved testing and verification and reviewed building standards.


Spatium ◽  
2007 ◽  
pp. 37-43
Author(s):  
Aleksandra Krstic

Sun is the renewable energy source whose usage exerts influence on architectural design. Facade concepts of energy efficient buildings are developed producing new facade structures and components. Photovoltaic systems, as elements of active solar systems are discussed in the paper and particular attention is paid to building integrated systems, as they influence building appearance. Classification and analyzes of PV systems - materials, supporting systems, coatings and design principles are presented in the paper. The purpose of this paper is discussion on design and construction possibilities for PV integration in envelopes of new and existing buildings. Possibilities for structural variability of envelopes with PV integrated systems are described in the paper. .


Sign in / Sign up

Export Citation Format

Share Document