scholarly journals Analysis of different aspects by flexible AC transmission system (FACTS) and distributed-FACTS (D-FACTS) devices on IEEE 14, 30 and 57 bus system

2018 ◽  
Vol 10 (4) ◽  
pp. 1084-1092
Author(s):  
Rizwana Khokhar ◽  
Mahendra Lalwani
2014 ◽  
Vol 3 (3) ◽  
pp. 73-95 ◽  
Author(s):  
Marwa Shahin ◽  
Ebtisam Saied ◽  
M.A. Moustafa Hassan ◽  
Fahmy Bendary

The main subject of these paper deals with enhancing the steady-state and dynamics performance of the power grids by using new idea namely Advanced Flexible AC Transmission Systems based on Evolutionary Computing Methods. Control of the electric power system can be achieved by using the new trends as Particle Swarm Optimization applied to this subject to enhance the characteristics of controller performance. This paper studies and analyzes Advanced Flexible AC Transmission System to mitigate only one of power quality problems is voltage swell. The Advanced Flexible AC Transmission System, which will be used in this paper, is the most promising one, which known as Advanced Thyristor Controlled Series Reactors, and Advanced Static VAR Compensator were utilized in this research to mitigate the voltage swell aiming to reach. This paper focuses on the operation of the AFACTS device under turning off heavy load that may causes transformer damaged, as no research covers this problem by this technique. Particle Swarm Optimization is used to determine the value of series inductor connected to the Advanced Flexible AC Transmission System. The proposed algorithm formatting, deriving, coding and programming the network equations required to link AFACTS during steady-state and dynamic behaviors to the power systems tested on the IEEE 30 bus system as well as IEEE 14 bus system, and 9 bus system.


Author(s):  
Naraina Avudayappan ◽  
S.N. Deepa

Purpose The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices. Design/methodology/approach The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC. Findings The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature. Research limitations/implications With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines. Practical implications The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network. Originality/value This paper fulfills an identified need to study exaction of congestion management of the power line.


Author(s):  
P. P. TAMBE ◽  
K. D. JOSHI

This paper is showcasing review of distributed static series compensator ( DSSC) & explains the effect of insertion of DSSC in transmission line power flow control. FACTS ( Flexible AC Transmission System) technology the aspect of Power Electronics offers High speed & reliability of switching & thus the value of electric energy is enhance. Along with merits there are certain problems offered by FACTS technology which leads to complexity in operation & overall cost investment becomes large. The solution to this is DFACTS technology i.e Distributed FACTS devices can be used in distributed position and DSSC belongs to DFACTS family.


2013 ◽  
Vol 302 ◽  
pp. 502-508 ◽  
Author(s):  
Chao Ming Huang ◽  
Yann Chang Huang ◽  
Kun Yuan Huang

This paper proposes an advanced technology to enhance the transfer capability of transmission system using flexible AC transmission system (FACTS). FACTS consists of thyristor-controlled series capacitor (TCSC), thyristor-controlled phase shifting transformer (TCPST), thyristor-controlled voltage regulator (TCVR) and static var compensator (SVC). The location of FACTS and their associated values dominate the transfer capability of transmission system. To determine the optimal solution of FACTS, this paper presents an enhanced differential evolution (EDE) approach to deal with this type of optimization problem. In comparison with basic DE, EDE uses a variable scaling mutation to adaptively adjust the mutation operation and enhance the global search capability of basic DE. The proposed method is verified on an IEEE 30-bus 41-transmission line system. To verify the performance of the proposed method, the basic DE and particle swarm optimization (PSO) methods are also implemented using the same database. The results show that the proposed approach provides better transmission loadability with less execution time than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document