scholarly journals Validation of a wide plate finite element model using digital image correlation

2011 ◽  
Vol 2 (3) ◽  
pp. 416-423
Author(s):  
K. De Keyser ◽  
F. Van Acker ◽  
Stijn Hertelé ◽  
Matthias Verstraete ◽  
Wim De Waele ◽  
...  

To investigate the influence of global plastic deformations on girth weld defect tolerance inpipelines, a parametric finite element model has been developed. This paper provides an experimentalvalidation of the model. It describes the test setup and instrumentation used for the evaluation of plasticstrain fields around a notch in a tension loaded non-welded X65 mini wide plate. LVDT measurements anddigital image correlation (DIC) results are compared to each other and to the results of finite elementsimulations. Whereas some deviation is observed owing to unavoidable experimental uncertainties andlimitations of finite element modelling, the overall correspondence is more than satisfying.

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2332 ◽  
Author(s):  
Alessandro Ruggiero ◽  
Roberto D’Amato ◽  
Saverio Affatato

In biomechanics and orthopedics, finite element modelling allows simulating complex problems, and in the last few years, it has been widely used in many applications, also in the field of biomechanics and biotribology. As is known, one crucial point of FEM (finite element model) is the discretization of the physical domain, and this procedure is called meshing. A well-designed mesh is necessary in order to achieve accurate results with an acceptable computational effort. The aim of this work is to test a finite element model to simulate the dry frictionless contact conditions of a hip joint prosthesis (a femoral head against an acetabular cup) in a soft bearing configuration by comparing the performances of 12 common meshing strategies. In the simulations, total deformation of the internal surface of the cup, contact pressure, and the equivalent von Mises stress are evaluated by using loads and kinematic conditions during a typical gait, obtained from a previous work using a musculoskeletal multibody model. Moreover, accounting for appropriate mesh quality metrics, the results are discussed, underlining the best choice we identified after the large amount of numerical simulations performed.


2008 ◽  
Vol 32 ◽  
pp. 251-254 ◽  
Author(s):  
Hei Jie Li ◽  
Jing Tao Han ◽  
Zheng Yi Jiang ◽  
Hua Chun Pi ◽  
Dong Bin Wei ◽  
...  

Taylor-type and finite element polycrstal models have been embedded into the commercial finite element code ABAQUS to carry out the crystal plasticity finite element modelling of BCC deformation texture based on rate dependent crystal constitutive equations. Initial orientations measured by EBSD were directly used in crystal plasticity finite element model to simulate the development of rolling texture of IF steel under various reductions. The calculated results are in good agreement with the experimental values. The predicted and measured textures tend to sharper with an increase of reduction, and the texture obtained from the Taylor-type model is much stronger than that by finite element model. The rolling textures calculated with 48 {110}<110>, {112}<111> and {123}<111> slip systems are close to the EBSD results.


Author(s):  
Soo Kng Teo ◽  
Kim H. Parker ◽  
K.-H. Chiam

In this paper, we discuss the results arising from using a viscoelastic, axisymmetric finite-element model [1] to study the aspiration of neutrophils into a tapered micropipette [2]. The key feature of our model is that we take into account the experimentally observed temporal variations in the rheological properties of deforming neutrophils [3]. We show that our model successfully reproduces the equilibrium state reached by a neutrophil subjected to a constant step pressure [2]. We are also able to extract quantitative information about the rate at which the rheological properties of the neutrophil change. Such information may be difficult to obtain directly from the experiments themselves. Thus, our approach illustrates the usefulness of computational modeling as a complement to experiments.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Mariyana A. A. K. ◽  
A. S. M. Abdul Awal ◽  
Mahmood Md. Tahir

This paper presents finite element modelling (FEM) of a reinforced concrete (RC) frame subjected to elevated temperature. The work presented is part of the UK-India Education and Research Initiative (UKIERI) project. In this project, an experimental test of sub-assemblage frame with elevated temperature has been performed at Indian Institute of Technology (IIT) Roorkee, India. The finite element model using ABAQUS software has been used to validate the increased in temperature distribution on reinforced concrete frame exposed to fire. The idea of this study is to design a compartment fire, and determination of emissivity value at different height. And composition of hot gases was calculated. Gas temperatures used was based on the average temperature-curve obtained in the fire test. The validity of the finite element model was established by comparing the predicted values from the FEM with test data direct from fire test results. The results obtained indicate that suggested FEM analysis procedure is capable of modelling temperature in compartment fires.  


2014 ◽  
Vol 657 ◽  
pp. 735-739 ◽  
Author(s):  
Emilian Ionut Croitoru ◽  
Gheorghe Oancea

This paper presents a method of finite element modelling used for the impact analysis of a composite panel. In this research, the composite panel consists of an oxygen mask locking panel of an aircraft. This panel is loaded with one concentrated abuse loading and three uniform distributed abuse loading cases and the stress variation within the composite panel for each load case is determined. In order to assess the impact analysis on the oxygen mask panel of the aircraft, a finite element model is created using Patran as the main application for pre/post-processing and Nastran as the main processor. The paper also presents a comparison between results obtained using the same finite element modelling of the composite panel CAD model of the panel with four load cases with different material types. The results are used to determine the most capable material stresswise.


Author(s):  
Ievgen Levadnyi ◽  
Jan Awrejcewicz ◽  
Yan Zhang ◽  
Yaodong Gu

Bone fracture, formation and adaptation are related to mechanical strains in bone. Assessing bone stiffness and strain distribution under different loading conditions may help predict diseases and improve surgical results by determining the best conditions for long-term functioning of bone-implant systems. In this study, an experimentally wide range of loading conditions (56) was used to cover the directional range spanned by the hip joint force. Loads for different stance configurations were applied to composite femurs and assessed in a material testing machine. The experimental analysis provides a better understanding of the influence of the bone inclination angle in the frontal and sagittal planes on strain distribution and stiffness. The results show that the surface strain magnitude and stiffness vary significantly under different loading conditions. For the axial compression, maximal bending is observed at the mid-shaft, and bone stiffness is also maximal. The increased inclination leads to decreased stiffness and increased magnitude of maximum strain at the distal end of the femur. For comparative analysis of results, a three-dimensional, finite element model of the femur was used. To validate the finite element model, strain gauges and digital image correlation system were employed. During validation of the model, regression analysis indicated robust agreement between the measured and predicted strains, with high correlation coefficient and low root-mean-square error of the estimate. The results of stiffnesses obtained from multi-loading conditions experiments were qualitatively compared with results obtained from a finite element analysis of the validated model of femur with the same multi-loading conditions. When the obtained numerical results are qualitatively compared with experimental ones, similarities can be noted. The developed finite element model of femur may be used as a promising tool to estimate proximal femur strength and identify the best conditions for long-term functioning of the bone-implant system in future study.


2014 ◽  
Vol 553 ◽  
pp. 769-773 ◽  
Author(s):  
E.A. Flores-Johnson ◽  
J.G. Carrillo ◽  
R.A. Gamboa ◽  
Lu Ming Shen

In this work, a 3D finite-element model of the ballistic impact of a multi-layered plain-woven aramid fabric style 720 (Kevlar®129 fibre, 1420 denier, 20×20 yarns per inch) impacted by a 6.7-mm spherical projectile was built at the mesoscale in Abaqus/Explicit by modelling individual crimped yarns. Material properties and yarn geometry for the model were obtained from reported experimental observations. An orthotropic elastic model with a failure criterion based on the tensile strength of the yarns was used. Numerical predictions were compared with available experimental data. It was found that the finite-element model can reproduce the physical experimental observations, such as the straining of primary yarns and pyramidal-shaped deformation after perforation. The permanent deformation of fabric targets predicted by the numerical simulations was compared with available experimental results. It was found that the model fairly predicted the permanent deformation with a difference of about 21% when compared with experiments.


2019 ◽  
Vol 7 (2) ◽  
pp. 10-14
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Юлия Боженкова ◽  
...  

The study of the membrane coating of large-span structures is carried out. Five stages of installation and operation of the coating are considered. The uneven snow pressure on the coating was calculated and applied to the finite element model of the structure. Based on the results, the authors also provide conclusions and summary about the considered structure. Two options of emergency cases have been investigated. The results showed that the support contour is a key element of the structure. The failure of any element, connection except of the support contour does not lead to plastic deformations in the coating.


Sign in / Sign up

Export Citation Format

Share Document