membrane layer
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 2)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Shengyin Tang ◽  
Wanyi Fu ◽  
Tiantian Song ◽  
Tianhao Tang ◽  
Li Chen ◽  
...  

This work presents an effective approach for manganese-doped Al2O3 ceramic membrane (Mn-doped membrane) fouling control by in-situ confined H2O2 cleaning in wastewater treatment. An Mn-doped membrane with 0.7 atomic percent Mn doping in the membrane layer was used in a membrane bioreactor with the aim to improve the catalytic activity toward oxidation of foulants by H2O2. Backwashing with 1 mM H2O2 solution at a flux of 120 L/m2/h (LMH) for 1 min was determined to be the optimal mode for in-situ H2O2 cleaning, with confined H2O2 decomposition inside the membrane. The Mn-doped membrane with in-situ H2O2 cleaning demonstrated much better fouling mitigation efficiency than a pristine Al2O3 ceramic membrane (pristine membrane). With in-situ H2O2 cleaning, the transmembrane pressure increase (ΔTMP) of the Mn-doped membrane was 22.2 kPa after 24-h filtration, which was 40.5% lower than that of the pristine membrane (37.3 kPa). The enhanced fouling mitigation was attributed to Mn doping, in the Mn-doped membrane layer, that improved the membrane surface properties and confined the catalytic oxidation of foulants by H2O2 inside the membrane. Mn3+/Mn4+ redox couples in the Mn-doped membrane catalyzed H2O2 decomposition continuously to generate reactive oxygen species (ROS) (i.e., HO• and O21), which were likely to be confined in membrane pores and efficiently degraded organic foulants.


2021 ◽  
pp. 004051752110542
Author(s):  
Hongbin Li ◽  
Wenying Shi ◽  
Tengfei Li ◽  
Qiyun Du ◽  
Haixia Zhang ◽  
...  

With excellent mechanical properties, large porosity, and permeability, stainless steel (SS) fiber nonwoven felt has outstanding application advantages in high-temperature filtration and purification. However, the pore size of the SS nonwoven felt, which is directly determined by the diameter of the produced fiber stacked inside, usually varies from tens of microns to several microns. Low filtration accuracy greatly limits its application in the fields of fine separation and purification. In this study, the separation performance of SS fiber nonwoven felt was improved by the coating of a non-isotropic porous SS membrane layer via the immersion precipitation phase inversion-sintering method. The effects of sintering temperature on pore structure, surface wettability, separation performance, and mechanical properties of the coated SS nonwoven felt were characterized by scanning electron microscope (SEM), water contact angle (WCA), water permeability, and tensile test, respectively. The results suggest that with the increase of sintering temperature from 1000°C to 1200°C, both porosity and pore size reduce gradually. The WCA value shows an increase from 31.4 to 62.3° and pure water flux shows a corresponding decrease from 2562 to 889 L . m−2 . h−1. The sintering temperature has a negative effect on the mechanical strength of the coated SS fiber nonwoven felt, which is mainly determined by the mechanical properties of the sintered SS fiber nonwoven felt substrate. The coated SS fiber nonwoven felt exhibits a long-term durable separation performance even after frequent combined physical washing and chemical cleaning when applied in the treatment of potato starch wastewater.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 382
Author(s):  
Motomu Sakai ◽  
Yukichi Sasaki ◽  
Takuya Kaneko ◽  
Masahiko Matsukata

The micropore volumes and effective pore sizes of two types of silicalite-1 membranes were compared with those of a typical silicalite-1 powder. The silicalite-1 membrane with fewer grain boundaries in the membrane layer showed similar micropore volume and effective pores size to those of the silicalite-1 powder. In contrast, when the silicalite-1 membrane contained many grain boundaries, relatively small micropore volume and effective pore size were observed, suggesting that narrowing and obstruction of the micropore would occur along grain boundaries due to the disconnection of the zeolite pore. The silicalite-1 membrane with fewer grain boundaries exhibited relatively high permeation properties for C6-C8 hydrocarbons. There was an over 50-fold difference in benzene permeance between these two types of membranes. We concluded that it is important to reduce grain boundaries and improve pore-connectivity to develop an effective preparation method for obtaining a highly permeable membrane.


2021 ◽  
Vol 1162 ◽  
pp. 41-46
Author(s):  
Uripto Trisno Santoso ◽  
Abdullah ◽  
Dwi Rasy Mujiyanti ◽  
Dahlena Ariyani ◽  
Joyo Waskito

Reverse co-precipitation (RCP) in ambient atmosphere is one of the strategies to produce magnetite nanoparticles in a rapid, simple, and cost-effective synthesis route without applying temperature surfactants or inert gases. However, RCP of ferrous/ferric blended salt in sodium hydroxide (NaOH) solution in an oxidizing medium produced of maghemite as a dominant phase rather than magnetite because of the oxidation of Fe2+ to Fe3+ happened. Based on this background, an oil membrane layer-assisted reverse co-precipitation approach has been examined to synthesis of magnetite in ambient atmosphere at room temperature. The result showed that although addition of benzene as an oil membrane layer was effective to prevent oxidation of magnetite to maghemite, but the magnetite particle size for the samples from the oil membrane layer-assisted reverse co-precipitation method was much larger than that from a reverse co-precipitation method without addition of oil membrane layer.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 835 ◽  
Author(s):  
Soohwan Jang ◽  
Sunwoo Jung ◽  
Kwang Hyeon Baik

Enhanced hydrogen sensing performance of Pt Schottky diodes on ZnO single crystal wafers in humid ambient conditions is reported using a polymethylmethacrylate (PMMA) membrane layer. ZnO diode sensors showed little change in forward current when switching to wet ambient H2 conditions with 100% relative humidity. This sensitivity drop in the presence of water vapor can be attributed to surface coverage of hydroxyl groups on the Pt surface in humid ambient conditions. The hydrogen sensitivity of PMMA-coated diode sensors recovered up to 805% in wet H2 ambient conditions at room temperature. The PMMA layer can selectively filter water vapor and allow H2 molecules to pass through the membrane layer. It is clear that the PMMA layer can effectively serve as a moisture barrier because of low water vapor permeability and its hydrophobicity. In both dry and wet conditions, ZnO diodes exhibited relatively fast and stable on/off switching in each cycle with good repeatability.


Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 358 ◽  
Author(s):  
Endre Nagy ◽  
Márta Vitai

This paper investigated the steady-state mass transport process through anisotropic, composite membrane layers with variable mass transport coefficients, such as the diffusion coefficient, convective velocity, or chemical/biochemical reaction rate constant. The transfer processes can be a solution-diffusion model or diffusive plus convective process. In the theoretical part, the concentration distribution as well as the inlet and outlet mass transfer rates’ expressions are defined for physical transport processes with variable diffusion or solubility coefficients and then that for transport processes accompanied by first- and zero-order reactions, in the presence of diffusive and convective flow, with constant and variable parameters. The variation of the transport parameters as a function of the local coordinate was defined by linear equations. It was shown that the increasing diffusion coefficient or convective flow induces much lower concentrations across the membrane layer than transport processes, with their decreasing values a function of the space coordinate. Accordingly, this can strongly affect the effect of the concentration dependent chemical/biochemical reaction. The inlet mass transfer rate can also be mostly higher when the transport parameter decreases across the anisotropic membrane layer.


Sign in / Sign up

Export Citation Format

Share Document