scholarly journals Extracting accurate time domain features from vibration signals for reliable classification of bearing faults

2018 ◽  
Vol 5 (1) ◽  
pp. 156-163
Author(s):  
et al. Tahir ◽  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Han-Yun Chen ◽  
Ching-Hung Lee

This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 109
Author(s):  
Jimy Oblitas ◽  
Jorge Ruiz

Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.


Author(s):  
Balajee Alphonse ◽  
Venkatesan Rajagopal ◽  
Sudhakar Sengan ◽  
Kousalya Kittusamy ◽  
Amudha Kandasamy ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6452
Author(s):  
César Ricardo Soto-Ocampo ◽  
Juan David Cano-Moreno ◽  
José Manuel Mera ◽  
Joaquín Maroto

Increasing industrial competitiveness has led to an increased global interest in condition monitoring. In this sector, rotating machinery plays an important role, where the bearing is one of the most critical components. Many vibration-based signal treatments are already being used to identify features associated with bearing faults. The information embedded in such features are employed in the construction of health indicators, which allow for evaluation of the current operating status of the machine. In this work, the use of contour maps to represent the diagnosis map of a bearing, used as a health map, is presented for the first time. The results show that the proposed method is promising, allowing for the satisfactory detection and evaluation of the severity of bearing damage. In this initial stage of the research, our results suggest that this method can improve the classification of bearing faults and, therefore, optimise maintenance processes.


1999 ◽  
Author(s):  
T. I. Liu ◽  
F. Ordukhani

Abstract An on-line monitoring and diagnostic system is needed to detect faulty bearings. In this work, by applying the feature selection technique to the data obtained from vibration signals, six indices were selected. Artificial neural networks were used for nonlinear pattern recognition. An attempt was made to distinguish between normal and defective bearings. Counterpropagation neural networks with various network sizes were trained for these tasks. The counterpropagation neural networks were able to recognize a normal from a defective bearing with the success rate between 88.3% to 100%. The best results were obtained when all the six indices were used for the on-line classification of roller bearings.


Author(s):  
Yuwei Liu ◽  
Yuqiang Cheng ◽  
Zhenzhen Zhang ◽  
Shuming Yang

Sign in / Sign up

Export Citation Format

Share Document