scholarly journals Application of spatial- and diachronic-process analysis of landscape development in Central Lika, Croatia from 1980 to 2012

2021 ◽  
Vol 83 (2) ◽  
pp. 33-58
Author(s):  
Marta Hamzić ◽  
◽  
Borna Fuerst-Bjeliš ◽  

The paper presents structural features and the process and intensity of landscape changes in the Central Lika Region of Croatia, in the transitional, post-socialist and post-war periods (1980–2012). The aim of this paper is to analyse regularities and interrelations between the changes in structural features and the intensity of the processes that cause change. By using GIS spatial analysis methods, the shape, position, and condition of landscape patches were defined for each year. The diachronic process analysis, with the application of a specially-developed index — the Landscape Development Index (di) — made it possible to determine the intensity of development of individual landscape elements. The landscape was observed using the concept of Land Use/Land Cover (LULC) and, for this purpose, data from the CORINE Land Cover database were used for 1980 and 2012. The results showed fragmentation and an increase in the number and complexity of patches, as well as a decrease of the core patch area. Consequently, the increase of the share of edge areas has increased vulnerability to external influences and changes. Applying the Landscape Development Index (di) showed advantages compared to a standard comparison of the two conditions or synthetic indices, enabling the intensity of each observed phenomenon/process to be determined, and allowing for deeper spatial and temporal analysis as well as better understanding of landscape development.

2021 ◽  
Author(s):  
Jaime Gaona ◽  
Pere Quintana-Seguí ◽  
Maria José Escorihuela

<p>Droughts in the Iberian Peninsula are a natural hazard of great relevance due to their recurrence, severity and impact on multiple environmental and socioeconomic aspects. The Ebro Basin, located in the NE of the Iberian Peninsula, is particularly vulnerable to drought with consequences on agriculture, urban water supply and hydropower. This study, performed within the Project HUMID (CGL2017-85687-R), aims at evaluating the influence of the climatic, land cover and soil characteristics on the interactions between rainfall, evapotranspiration and soil moisture anomalies which define the spatio-temporal drought patterns in the basin.</p><p>The onset, propagation and mitigation of droughts in the Iberian Peninsula is driven by anomalies of rainfall, evapotranspiration and soil moisture, which are related by feedback processes. To test the relative importance of such anomalies, we evaluate the contribution of climatic, land-cover and geologic heterogeneity on the definition of the spatio-temporal patterns of drought. We use the Köppen-Geiger climatic classification to assess how the contrasting climatic types within the basin determine differences on drought behavior. Land-cover types that govern the partition between evaporation and transpiration are also of great interest to discern the influence of vegetation and crop types on the anomalies of evapotranspiration across the distinct regions of the basin (e.g. forested mountains vs. crop-dominated areas). The third physical characteristic whose effect on drought we investigate is the impact of soil properties on soil moisture anomalies.</p><p>The maps and time series used for the spatio-temporal analysis are based on drought indices calculated with high-resolution datasets from remote sensing (MOD16A2ET and SMOS1km) and the land-surface model SURFEX-ISBA. The Standardized Precipitation Index (SPI), the EvapoTranspiration Deficit Index (ETDI) and the Soil Moisture Deficit Index (SMDI) are the three indices chosen to characterize the anomalies of the corresponding rainfall (atmospheric), evapotranspiration (atmosphere-land interface) and soil moisture (land) anomalies (components of the water balance). The comparison of the correlations of the indices (with different time lags) between contrasting regions offers insights about the impact of climate, land-cover and soil properties in the dominance, the timing of the response and memory aspects of the interactions. The high spatial and temporal resolution of remote sensing and land-surface model data allows adopting time and spatial scales suitable to investigate the influence of these physical factors with detail beyond comparison with ground-based datasets.</p><p>The spatial and temporal analysis prove useful to investigate the physical factors of influence on the anomalies between rainfall, evapotranspiration and soil moisture. This approach facilitates the physical interpretation of the anomalies of drought indices aiming to improve the characterization of drought in heterogeneous semi-arid areas like the Ebro River Basin.</p>


2019 ◽  
Vol 12 (1) ◽  
pp. 73 ◽  
Author(s):  
Juan Torres-Batlló ◽  
Belén Martí-Cardona ◽  
Ramiro Pillco-Zolá

Lake Poopó is located in the Andean Mountain Range Plateau or Altiplano. A general decline in the lake water level has been observed in the last two decades, coinciding roughly with an intensification of agriculture exploitation, such as quinoa crops. Several factors have been linked with the shrinkage of the lake, including climate change, increased irrigation, mining extraction and population growth. Being an endorheic catchment, evapotranspiration (ET) losses are expected to be the main water output mechanism and previous studies demonstrated ET increases using Earth observation (EO) data. In this study, we seek to build upon these earlier findings by analyzing an ET time series dataset of higher spatial and temporal resolution, in conjunction with land cover and precipitation data. More specifically, we performed a spatio-temporal analysis, focusing on wet and dry periods, that showed that ET changes occur primarily in the wet period, while the dry period is approximately stationary. An analysis of vegetation trends performed using 500 MODIS vegetation index products (NDVI) also showed an overall increasing trend during the wet period. Analysis of NDVI and ET across land cover types showed that only croplands had experienced an increase in NDVI and ET losses, while natural covers showed either constant or decreasing NDVI trends together with increases in ET. The larger increase in vegetation and ET losses over agricultural regions, strongly suggests that cropping practices exacerbated water losses in these areas. This quantification provides essential information for the sustainable planning of water resources and land uses in the catchment. Finally, we examined the spatio-temporal trends of the precipitation using the newly available Climate Hazards Group Infrared Precipitation with Stations (CHIRPS-v2) product, which we validated with onsite rainfall measurements. When integrated over the entire catchment, precipitation and ET showed an average increasing trend of 5.2 mm yr−1 and 4.3 mm yr−1, respectively. This result suggests that, despite the increased ET losses, the catchment-wide water storage should have been offset by the higher precipitation. However, this result is only applicable to the catchment-wide water balance, and the location of water may have been altered (e.g., by river abstractions or by the creation of impoundments) to the detriment of the Lake Poopó downstream.


2014 ◽  
Vol 18 (10) ◽  
pp. 1-32 ◽  
Author(s):  
Olivia Kellner ◽  
Dev Niyogi

Abstract Land surface heterogeneity affects mesoscale interactions, including the evolution of severe convection. However, its contribution to tornadogenesis is not well known. Indiana is selected as an example to present an assessment of documented tornadoes and land surface heterogeneity to better understand the spatial distribution of tornadoes. This assessment is developed using a GIS framework taking data from 1950 to 2012 and investigates the following topics: temporal analysis, effect of ENSO, antecedent rainfall linkages, population density, land use/land cover, and topography, placing them in the context of land surface heterogeneity. Spatial analysis of tornado touchdown locations reveals several spatial relationships with regard to cities, population density, land-use classification, and topography. A total of 61% of F0–F5 tornadoes and 43% of F0–F5 tornadoes in Indiana have touched down within 1 km of urban land use and land area classified as forest, respectively, suggesting the possible role of land-use surface roughness on tornado occurrences. The correlation of tornado touchdown points to population density suggests a moderate to strong relationship. A temporal analysis of tornado days shows favored time of day, months, seasons, and active tornado years. Tornado days for 1950–2012 are compared to antecedent rainfall and ENSO phases, which both show no discernible relationship with the average number of annual tornado days. Analysis of tornado touchdowns and topography does not indicate any strong relationship between tornado touchdowns and elevation. Results suggest a possible signature of land surface heterogeneity—particularly that around urban and forested land cover—in tornado climatology.


Sign in / Sign up

Export Citation Format

Share Document