scholarly journals Land Surface Heterogeneity Signature in Tornado Climatology? An Illustrative Analysis over Indiana, 1950–2012*

2014 ◽  
Vol 18 (10) ◽  
pp. 1-32 ◽  
Author(s):  
Olivia Kellner ◽  
Dev Niyogi

Abstract Land surface heterogeneity affects mesoscale interactions, including the evolution of severe convection. However, its contribution to tornadogenesis is not well known. Indiana is selected as an example to present an assessment of documented tornadoes and land surface heterogeneity to better understand the spatial distribution of tornadoes. This assessment is developed using a GIS framework taking data from 1950 to 2012 and investigates the following topics: temporal analysis, effect of ENSO, antecedent rainfall linkages, population density, land use/land cover, and topography, placing them in the context of land surface heterogeneity. Spatial analysis of tornado touchdown locations reveals several spatial relationships with regard to cities, population density, land-use classification, and topography. A total of 61% of F0–F5 tornadoes and 43% of F0–F5 tornadoes in Indiana have touched down within 1 km of urban land use and land area classified as forest, respectively, suggesting the possible role of land-use surface roughness on tornado occurrences. The correlation of tornado touchdown points to population density suggests a moderate to strong relationship. A temporal analysis of tornado days shows favored time of day, months, seasons, and active tornado years. Tornado days for 1950–2012 are compared to antecedent rainfall and ENSO phases, which both show no discernible relationship with the average number of annual tornado days. Analysis of tornado touchdowns and topography does not indicate any strong relationship between tornado touchdowns and elevation. Results suggest a possible signature of land surface heterogeneity—particularly that around urban and forested land cover—in tornado climatology.

2017 ◽  
Vol 49 (1) ◽  
pp. 1 ◽  
Author(s):  
Adi Wibowo ◽  
Khairulmaini Osman Salleh ◽  
Adi Wibowo

As education area, campus or university is full with various activities which have an impact on the existence of land-use or land-cover. The variation of activities dynamically change the shape of land-use or land-cover within the campus area, thus also create variations in Land Surface Temperature (LST). The LST are impacting the coziness of human activity especially when reaches more than 30 oC. This study used the term Urban Heat Signature (UHS) to explain LST in different land-use or land-cover types. The objective of this study is to examine UHS as an Urban Heat Hazard (UHH) based on Universal Temperature Climate Index (UTCI) and Effective Temperature Index (ETI) in University of Indonesia. Thermal bands of Landsat 8 images (the acquisition year 2013-2015) were used to create LST model. A ground data known as Air Surface Temperature (AST) were used to validate the model. The result showed an increased level of maximum temperature during September-October since 2013 until 2014. The maximum temperature was reduced in October 2014, however it increased again in August 2015. The UTCI showed “moderate” and “strong heat stress”, while EFI showed “uncomfortable” and “very uncomfortable” categories during that period. This research concluded that build up area in UI Campus highest temperature on UI campus based on UHS. Range UHS in Campus UI on 2013 (21.8-31.1oC), 2014 (25.0-36.2oC) and 2015 (24.9-38.2oC). This maximum UHS on September (2014 and 2015) put on levelling UTCI included range temperature 32-35oC, with an explanation of sensation temperature is warm and sensation of comfort is Uncomfortable, Psychology with  Increasing Stress Case by Sweating and Blood Flow and Health category is Cardiovascular Embarrassment. This UHS occurs in September will give impact on psychology and health, that’s become the UHH of the living on education area.


2020 ◽  
Author(s):  
Sopan Patil ◽  
John Musau ◽  
Michael Marshall

<p>Effective modeling of surface water and energy balance is crucial in planning and management of regional resources. However, the heterogeneous and clumped vegetation structure controls the portioning of land surface water and energy fluxes, which leads to large variations of local radiative and hydrological processes. The aim of this study is to characterize the land surface heterogeneity in East Africa and examine the impact of the spatially and temporally varying vegetation parameters on energy and water balance in the region.  We used MODIS datasets on Leaf Area Index (LAI), Enhanced Vegetation Index (EVI) and albedo to derive time-varying vegetation parameters for the period 2001 – 2011 period at 0.05° resolution. These parameters were integrated with the Variable Infiltration Capacity (VIC) model to characterize the effects of varying vegetation properties on surface water and energy fluxes. A twin simulation was also carried based on seasonally averaged vegetation parameters to isolate the effects of time-varying and spatially heterogeneous parameters on the water and energy fluxes. The simulation results were compared to rigorously validated global datasets on evapotranspiration and sensible heat. Results showed that the time-varying and spatially heterogeneous vegetation parameters provided surface water and energy fluxes which were more consistent with the validation datasets. The simulated evapotranspiration matched reasonably well with the observed values particularly in areas characterized by sparse vegetation and which are more prone to human influence. The improvements were highly noticeable in grassland and savanna land cover types. However, due to intensive human activities in region which affect not only the lad cover but also the vegetation structure, there is need for characterization of the land cover parameters based on high resolution data which can better capture the land surface heterogeneity in the region.</p>


2011 ◽  
Vol 12 (6) ◽  
pp. 1321-1336 ◽  
Author(s):  
Armel Thibaut Kaptué Tchuenté ◽  
Jean-Louis Roujean ◽  
Agnès Bégué ◽  
Sietse O. Los ◽  
Aaron A. Boone ◽  
...  

Abstract Information related to land surface is immensely important to global change science. For example, land surface changes can alter regional climate through its effects on fluxes of water, energy, and carbon. In the past decades, data sources and methodologies for characterizing land surface heterogeneity (e.g., land cover, leaf area index, fractional vegetation cover, bare soil, and vegetation albedos) from remote sensing have evolved rapidly. The double ECOCLIMAP database—constituted of a land cover map and land surface variables and derived from Advanced Very High Resolution Radiometer (AVHRR) observations acquired between April 1992 and March 1993—was developed to support investigations that require information related to spatiotemporal dynamics of land surface. Here is the description of ECOCLIMAP-II: a new characterization of the land surface heterogeneity based on the latest generation of sensors, which represents an update of the ECOCLIMAP-I database over Africa. Owing to the many features of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (more accurate in spatial resolution and spectral information compared to the AVHRR sensor), a variety of methods have been developed for an extended period of 8 yr (2000–07) to strengthen consistency between land surface variables as required by the meteorological and ecological communities. The relative accuracy (or performance) quality of ECOCLIMAP-II was assessed (i.e., by comparison with other global datasets). Results illustrate a substantial refinement; for instance, the fractional vegetation cover resulting in a root-mean-square error of 34% instead of 64% in comparison with the original version of ECOCLIMAP.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


2020 ◽  
Vol 18 ◽  
pp. 100314 ◽  
Author(s):  
Abdulla - Al Kafy ◽  
Md. Shahinoor Rahman ◽  
Abdullah-Al- Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Muhaiminul Islam

Sign in / Sign up

Export Citation Format

Share Document