scholarly journals lincRNA-RP11400K9.4 Regulates Cell Survival and Migration of Breast Cancer Cells

2020 ◽  
Vol 17 (6) ◽  
pp. 769-779
Author(s):  
MIGUEL A. FERNÁNDEZ-ROJAS ◽  
JORGE MELENDEZ-ZAJGLA ◽  
VILMA MALDONADO LAGUNAS
2016 ◽  
Vol 341 (2) ◽  
pp. 111-122 ◽  
Author(s):  
Marta Guedes ◽  
João R. Araújo ◽  
Ana Correia-Branco ◽  
Inês Gregório ◽  
Fátima Martel ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2017 ◽  
Vol 17 (6) ◽  
pp. 1600430 ◽  
Author(s):  
Daniel Nisakar Meenakshi Sundaram ◽  
Cezary Kucharski ◽  
Manoj B. Parmar ◽  
Remant Bahadur KC ◽  
Hasan Uludağ

2017 ◽  
Vol 50 (5) ◽  
pp. 1701-1710 ◽  
Author(s):  
Yanling Ding ◽  
Chunfu Zhang ◽  
Jiahui Zhang ◽  
Nannan Zhang ◽  
Tao Li ◽  
...  

EMBO Reports ◽  
2017 ◽  
Vol 18 (3) ◽  
pp. 420-436 ◽  
Author(s):  
Emad Heidary Arash ◽  
Ahmed Shiban ◽  
Siyuan Song ◽  
Liliana Attisano

Sign in / Sign up

Export Citation Format

Share Document