scholarly journals О защите высоковольтных мезаструктурных 4H-SiC-приборов от поверхностного пробоя: прямая фаска

Author(s):  
Н.М. Лебедева ◽  
Н.Д. Ильинская ◽  
П.А. Иванов

Abstract The prospects for the protection of high-voltage 4 H -SiC-devices from edge breakdown via the formation of mesa structures with inclined walls (negative beveling) are considered. Numerical simulation of the spatial electric-field distribution in high-voltage (~1500V) reverse-biased mesa-epitaxial p ^+– p – n _0– n ^+ 4 H -SiC diodes is performed. It is shown that negative beveling with small angles of less than 10° from the plane of the p – n _0 junction makes it possible to reduce severalfold the surface edge electric field as compared to that in the bulk. A combined protection method is suggested as the edge-termination technique for 4 H -SiC diodes with a p ^+– n _0– n ^+ structure, Schottky diodes with an n _0 blocking base, and bipolar n ^+– p – n _0 transistors via the implantation of boron along with negative beveling. The possibility of fabricating mesa structures with inclined walls via the photolithography and dry etching of silicon carbide is briefly discussed.

2018 ◽  
Vol 82 ◽  
pp. 160-164 ◽  
Author(s):  
Khaled Driche ◽  
Sarah Rugen ◽  
Nando Kaminski ◽  
Hitoshi Umezawa ◽  
Hajime Okumura ◽  
...  

2018 ◽  
Vol 7 (3.36) ◽  
pp. 127 ◽  
Author(s):  
Nishanthi Sunthrasakaran ◽  
Nor Akmal Mohd Jamail ◽  
Qamarul Ezani Kamarudin ◽  
Sujeetha Gunabalan

The most important aspect influencing the circumstance and characteristics of electrical discharges is the distribution of electric field in the gap of electrodes. The study of discharge performance requires details on the variation of maximum electric field around the electrode. In electrical power system, the insulation of high voltage power system usually subjected with high electric field. The high electric field causes the degradation performance of insulation and electrical breakdown start to occur. Generally, the standard sphere gaps widely used for protective device in electrical power equipment. This project is study about the electric field distribution and current density for different electrode configuration with XLPE barrier. Hence, the different electrode configuration influences the electric field distribution. This project mainly involves the simulation in order to evaluate the maximum electric field for different electrode configuration. Finite Element Method (FEM) software has been used in this project to perform the simulation. This project also discusses the breakdown characteristics of the XLPE. The accurate evaluation of electric field distribution and maximum electric field is an essential for the determination of discharge behavior of high voltage apparatus and components. The degree of uniformity is very low for pointed rod-plane when compared to other two electrode configurations. The non- uniform electric distribution creates electrical stress within the surface of dielectric barrier. As a conclusion, when the gap distance between the electrodes increase the electric field decrease.  


2014 ◽  
Vol 989-994 ◽  
pp. 1273-1277
Author(s):  
Chang Ming Li ◽  
Bao Zhong Han ◽  
Long Zhao ◽  
Chun Peng Yin

Nonlinear insulated materials can uniform electric field distribution in non-uniform electric field. In order to inhibit the electric tree initiation and propagation inside high-voltage cross-linked polyethylene (XLPE) insulated cable, a kind of 220kV high-voltage XLPE insulated cable with new structure is designed by embedding nonlinear shielding layer into XLPE insulation layer of high-voltage cable with traditional structure in this study. Experimental and simulation results indicate that the nonlinear shielding layer can effectively inhibit electrical tree propagation inside the XLPE specimens, and obviously extend the breakdown time caused by electric tree propagation. When the electrical tree propagates into the nonlinear shielding layer sandwiched between insulation layers of cable, the electric field distribution near the tip of electrical tree is obviously improved. These findings prove the feasibility and the effectivity of inhibiting electrical tree propagation inside high-voltage cable by adding nonlinear shielding layer into the insulation layer.


1998 ◽  
Vol 512 ◽  
Author(s):  
B. Jayant Baliga

ABSTRACTProgress made in the development of high performance power rectifiers and switches from silicon carbide are reviewed with emphasis on approaching the 100-fold reduction in the specific on-resistance of the drift region when compared with silicon devices with the same breakdown voltage. The highlights are: (a) Recently completed measurements of impact ionization coefficients in SiC indicate an even higher Baliga's figure of merit than projected earlier. (b) The commonly reported negative temperature co-efficient for breakdown voltage in SiC devices has been shown to arise at defects, allaying concerns that this may be intrinsic to the material. (c) Based upon fundamental considerations, it has been found that Schottky rectifiers offer superior on-state voltage drop than P-i-N rectifiers for reverse blocking voltages below 3000 volts. (d) Nearly ideal breakdown voltage has been experimentally obtained for Schottky diodes using an argon implanted edge termination. (e) Planar ion-implanted junctions have been successfully fabricated using oxide as a mask with high breakdown voltage and low leakage currents by using a filed plate edge termination. (f) High inversion layer mobility has been experimentally demonstrated on both 6H and 4H-SiC by using a deposited oxide layer as gate dielectric. (g) A novel, high-voltage, normally-off, accumulation-channel, MOSFET has been proposed and demonstrated with 50x lower specific on-resistance than silicon devices in spite of using logic-level gate drive voltages. These results indicate that SiC based power devices could become commercially viable in the 21st century if cost barriers can be overcome.


2011 ◽  
Vol 130-134 ◽  
pp. 1413-1417
Author(s):  
You Hua Gao ◽  
Guo Wei Liu ◽  
Yan Bin Li ◽  
You Feng Gao

Numerical calculation model with compound insulation of transient electric field is given. The insulation is more prominent due to complication for voltage applied on valve side winding of the converter transformer. So the simplied structure for electric calculation on the valve side winding of the converter transformer is established. The electric field distribution characteristics on the valve side winding of the converter transformer is analyzed and electric fields in different resistivity and permittivity are calculated under AC high voltage, DC high voltage, AC superimposed DC voltage, polarity reversal voltage. The maximum electric field intensity is calculated and analyzed under kinds of high voltage. Some important influence factors for electric field distribution are also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document