High Voltage Silicon Carbide Devices

1998 ◽  
Vol 512 ◽  
Author(s):  
B. Jayant Baliga

ABSTRACTProgress made in the development of high performance power rectifiers and switches from silicon carbide are reviewed with emphasis on approaching the 100-fold reduction in the specific on-resistance of the drift region when compared with silicon devices with the same breakdown voltage. The highlights are: (a) Recently completed measurements of impact ionization coefficients in SiC indicate an even higher Baliga's figure of merit than projected earlier. (b) The commonly reported negative temperature co-efficient for breakdown voltage in SiC devices has been shown to arise at defects, allaying concerns that this may be intrinsic to the material. (c) Based upon fundamental considerations, it has been found that Schottky rectifiers offer superior on-state voltage drop than P-i-N rectifiers for reverse blocking voltages below 3000 volts. (d) Nearly ideal breakdown voltage has been experimentally obtained for Schottky diodes using an argon implanted edge termination. (e) Planar ion-implanted junctions have been successfully fabricated using oxide as a mask with high breakdown voltage and low leakage currents by using a filed plate edge termination. (f) High inversion layer mobility has been experimentally demonstrated on both 6H and 4H-SiC by using a deposited oxide layer as gate dielectric. (g) A novel, high-voltage, normally-off, accumulation-channel, MOSFET has been proposed and demonstrated with 50x lower specific on-resistance than silicon devices in spite of using logic-level gate drive voltages. These results indicate that SiC based power devices could become commercially viable in the 21st century if cost barriers can be overcome.

Author(s):  
Н.М. Лебедева ◽  
Н.Д. Ильинская ◽  
П.А. Иванов

Abstract The prospects for the protection of high-voltage 4 H -SiC-devices from edge breakdown via the formation of mesa structures with inclined walls (negative beveling) are considered. Numerical simulation of the spatial electric-field distribution in high-voltage (~1500V) reverse-biased mesa-epitaxial p ^+– p – n _0– n ^+ 4 H -SiC diodes is performed. It is shown that negative beveling with small angles of less than 10° from the plane of the p – n _0 junction makes it possible to reduce severalfold the surface edge electric field as compared to that in the bulk. A combined protection method is suggested as the edge-termination technique for 4 H -SiC diodes with a p ^+– n _0– n ^+ structure, Schottky diodes with an n _0 blocking base, and bipolar n ^+– p – n _0 transistors via the implantation of boron along with negative beveling. The possibility of fabricating mesa structures with inclined walls via the photolithography and dry etching of silicon carbide is briefly discussed.


2017 ◽  
Vol 730 ◽  
pp. 102-105
Author(s):  
Ey Goo Kang

The silicon carbide (SiC) material is being spotlighted as a next-generation power semiconductor material due to the characteristic limitations of the existing silicon materials. SiC has a wider band gap, higher breakdown voltage, higher thermal conductivity, and higher saturation electron mobility than Si. However, actual SiC SBDs exhibit a lower dielectric breakdown voltage than the theoretical breakdown voltage that causes the electric field concentration, a phenomenon that occurs on the edge of the contact surface as in the conventional power semiconductor devices. In this paper, we designed an edge termination structure using a field plate structure through oxide etch angle control, and optimized the structure to obtain a high breakdown voltage. The experiment results indicated that oxide etch angle was 45° when the breakdown voltage characteristics of the SiC SBD were optimized and a breakdown voltage of 681V was obtained.


Author(s):  
Konstantin V. Vassilevski ◽  
I. Nikitina ◽  
A.B. Horsfall ◽  
Nicolas G. Wright ◽  
Anthony G. O'Neill ◽  
...  

2013 ◽  
Vol 347-350 ◽  
pp. 1506-1509 ◽  
Author(s):  
Yong Hong Tao ◽  
Run Hua Huang ◽  
Gang Chen ◽  
Song Bai ◽  
Yun Li

High voltage 4H-SiC junction barrier schottky (JBS) diode with breakdown voltage higher than 4.5 kV has been fabricated. The doping level and thickness of the N-type drift layer and the device structure have been performed by numerical simulations. The thickness of the device epilayer is 50 μm, and the doping concentration is 1.2×1015 cm3. A floating guard rings edge termination has been used to improve the effectiveness of the edge termination technique. The diodes can block a reverse voltage of at least 4.5 kV, and the on-state current density was 80 A/cm2 at VF =4 V.


2012 ◽  
Vol 717-720 ◽  
pp. 977-980 ◽  
Author(s):  
Megan Snook ◽  
Ty McNutt ◽  
Chris Kirby ◽  
Harold Hearne ◽  
Victor Veliadis ◽  
...  

The multi-zone junction termination extension (MJTE) is a widely used edge termination technique for achieving high voltage SiC devices. It is commonly implemented with multiple lithography and implantation events. In order to reduce process complexity, cycle time, and cost, a single photolithography and single implant MJTE technique has been successfully developed. The method utilizes a pattern of finely graduated oxide windows that filter the implant dose and create a graded MJTE in a single implant and single photolithography step. Based on this technique, 6 kV / 0.09 cm2 PiN diodes were fabricated utilizing a 120-zone single-implant JTE design. This novel single-implant MJTE design captures 93% of the ideal breakdown voltage and has comparable performance and yield to a baseline three implant process.


1999 ◽  
Vol 572 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
S. Soloviev ◽  
T. S. Sudarshan

ABSTRACTP-type 6H SiC Schottky barrier diodes with good rectifying characteristics upto breakdown voltage as high as 1000V have been successfully fabricated using metal-overlap over a thick oxide layer (∼ 6000 Å) as edge termination and Al as the barrier metal. The influence of the oxide layer edge termination in improving the reverse breakdown voltage as well as the forward current – voltage characteristics is presented. The terminated Schottky diodes indicate a factor of two higher breakdown voltage and 2–3 times larger forward current densities than those without edge termination. The specific series resistance of the unterminated diodes was ∼228 mΩ-cm2, while that of the terminated diodes was ∼84 mΩ-cm2.


2012 ◽  
Vol 236-237 ◽  
pp. 797-800
Author(s):  
Xiao Ming Yang ◽  
Yu Cai ◽  
Tian Qian Li

A slope SOI-LDMOS power device is proposed for high-voltage. When a positive bais is applied to the drain electrode, holes are induced and astricted by the slope buried oxide layer. So a high density positive charge layer is formed on the buried oxide layer. The electrical field in the buried oxide is improved as well as vertical breakdown voltage by the layer. Because the thickness of the drift region linearly increases from the source to the drain, the surface electric field is optimized, resulting in increase of lateral breakdown voltage. In this paper, the electric characteristics of the new device are simulated by Medici softerware. The result is shown that above 600 V breakdown voltage is obtained at 1μm thick buried oxide layer. The breakdown voltage is higher by three times than that of conventional SOI LDMOS.


Sign in / Sign up

Export Citation Format

Share Document