scholarly journals Формирование интерметаллида Cu-=SUB=-6-=/SUB=-Sn-=SUB=-5-=/SUB=- в тонких пленках Cu/Sn

2021 ◽  
Vol 63 (12) ◽  
pp. 2205
Author(s):  
Л.Е. Быкова ◽  
С.М. Жарков ◽  
В.Г. Мягков ◽  
Ю.Ю. Балашов ◽  
Г.С. Патрин

The study of the formation of the Cu6Sn5 intermetallic compound in Sn(55nm)/Cu(30nm) thin bilayer films was carried out directly in the column of a transmission electron microscope (electron diffraction mode) by heating the film sample from room temperature to 300 °C and recording the electron diffraction patterns. The thin films formed as a result of a solid state reaction were monophase and consisted of the η-Cu6Sn5 hexagonal phase. The temperature range for the formation of the η-Cu6Sn5 phase was determined. The estimate of the effective interdiffusion coefficient of the reaction suggests that the main mechanism for the formation of the Cu6Sn5 intermetallic is diffusion along the grain boundaries and dislocations.

2009 ◽  
Vol 65 (6) ◽  
pp. 694-698 ◽  
Author(s):  
Y. Han ◽  
I. M. Reaney ◽  
D. S. Tinberg ◽  
S. Trolier-McKinstry

SrRuO3 (SRO) thin films grown on (001)p (p = pseudocubic) oriented LaAlO3 (LAO) by pulsed laser deposition have been characterized using transmission electron microscopy. Observations along the 〈100〉p directions suggests that although the SRO layer maintains a pseudocube-to-pseudocube orientation relationship with the underlying LAO substrate, it has a ferroelastic domain structure associated with a transformation on cooling to room temperature to an orthorhombic Pbnm phase (a − a − c + Glazer tilt system). In addition, extra diffraction spots located at ±1/6(ooo)p and ±1/3(ooo)p (where `o' indicates an index with an odd number) positions were obtained in 〈110〉p zone-axis diffraction patterns. These were attributed to the existence of high-density twins on {111}p pseudocubic planes within the SrRuO3 films rather than to more conventional mechanisms for the generation of superstructure reflections.


2013 ◽  
Vol 19 (3) ◽  
pp. 693-697 ◽  
Author(s):  
M. Galceran ◽  
A. Albou ◽  
K. Renard ◽  
M. Coulombier ◽  
P.J. Jacques ◽  
...  

AbstractA new automated crystallographic orientation mapping tool in a transmission electron microscope technique, which is based on pattern matching between every acquired electron diffraction pattern and precalculated templates, has been used for the microstructural characterization of nondeformed and deformed aluminum thin films and twinning-induced plasticity steels. The increased spatial resolution and the use of electron diffraction patterns rather than Kikuchi lines make this tool very appropriate to characterize fine grained and deformed microstructures.


2009 ◽  
Vol 42 (2) ◽  
pp. 242-252 ◽  
Author(s):  
Cyril Cayron ◽  
Martien Den Hertog ◽  
Laurence Latu-Romain ◽  
Céline Mouchet ◽  
Christopher Secouard ◽  
...  

Odd electron diffraction patterns (EDPs) have been obtained by transmission electron microscopy (TEM) on silicon nanowires grownviathe vapour–liquid–solid method and on silicon thin films deposited by electron beam evaporation. Many explanations have been given in the past, without consensus among the scientific community: size artifacts, twinning artifacts or, more widely accepted, the existence of new hexagonal Si phases. In order to resolve this issue, the microstructures of Si nanowires and Si thin films have been characterized by TEM, high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy. Despite the differences in the geometries and elaboration processes, the EDPs of the materials show great similarities. The different hypotheses reported in the literature have been investigated. It was found that the positions of the diffraction spots in the EDPs could be reproduced by simulating a hexagonal structure withc/a= 12(2/3)1/2, but the intensities in many EDPs remained unexplained. Finally, it was established that all the experimental data,i.e.EDPs and HRTEM images, agree with a classical cubic silicon structure containing two microstructural defects: (i) overlapping Σ3 microtwins which induce extra spots by double diffraction, and (ii) nanotwins which induce extra spots as a result of streaking effects. It is concluded that there is no hexagonal phase in the Si nanowires and the Si thin films presented in this work.


1994 ◽  
Vol 343 ◽  
Author(s):  
A. L. Stepanov ◽  
R. I. Khaibullin ◽  
S. N. Abdullin ◽  
Yu. N. Osin ◽  
I. B. Khaibullin

ABSTRACTThe structure and phase composition of thin films formed by 40 KeV cobalt ion implantation into organic substrate (polyester) were studied by transmission electron microscopy in conjunction with electron diffraction. Varying current density and dose implantation over the range 0.3×1016 – 2.4×1017 cm-2 we obtained island-like cobalt films of different type as well as labyrinth-like structure at the highest dose value. The granulometric and morphologic parameters were derived from the micrographs of the investigated films. Both amorphous state and α-Co crystalline lattice of cobalt granules were established from electron diffraction patterns of synthesized films. Along with discontinuous films, we formed monocrystalline plates of α-phase cobalt under the determined implantation regimes and conditions. Cross-section images of synthesized films showed that films are of about 300 Å thick and buried at the depth of 150 Å from the principal surface of the polyester.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Author(s):  
Jaap Brink ◽  
Wah Chiu

Crotoxin complex is the principal neurotoxin of the South American rattlesnake, Crotalus durissus terrificus and has a molecular weight of 24 kDa. The protein is a heterodimer with subunit A assigneda chaperone function. Subunit B carries the lethal activity, which is exerted on both sides ofthe neuro-muscular junction, and which is thought to involve binding to the acetylcholine receptor. Insight in crotoxin complex’ mode of action can be gained from a 3 Å resolution structure obtained by electron crystallography. This abstract communicates our progress in merging the electron diffraction amplitudes into a 3-dimensional (3D) intensity data set close to completion. Since the thickness of crotoxin complex crystals varies from one crystal to the other, we chose to collect tilt series of electron diffraction patterns after determining their thickness. Furthermore, by making use of the symmetry present in these tilt data, intensities collected only from similar crystals will be merged.Suitable crystals of glucose-embedded crotoxin complex were searched for in the defocussed diffraction mode with the goniometer tilted to 55° of higher in a JEOL4000 electron cryo-microscopc operated at 400 kV with the crystals kept at -120°C in a Gatan 626 cryo-holder. The crystal thickness was measured using the local contrast of the crystal relative to the supporting film from search-mode images acquired using a 1024 x 1024 slow-scan CCD camera (model 679, Gatan Inc.).


Author(s):  
Pierre Moine

Qualitatively, amorphous structures can be easily revealed and differentiated from crystalline phases by their Transmission Electron Microscopy (TEM) images and their diffraction patterns (fig.1 and 2) but, for quantitative structural information, electron diffraction pattern intensity analyses are necessary. The parameters describing the structure of an amorphous specimen have been introduced in the context of scattering experiments which have been, so far, the most used techniques to obtain structural information in the form of statistical averages. When only small amorphous volumes (< 1/μm in size or thickness) are available, the much higher scattering of electrons (compared to neutrons or x rays) makes, despite its drawbacks, electron diffraction extremely valuable and often the only feasible technique.In a diffraction experiment, the intensity IN (Q) of a radiation, elastically scattered by N atoms of a sample, is measured and related to the atomic structure, using the fundamental relation (Born approximation) : IN(Q) = |FT[U(r)]|.


Sign in / Sign up

Export Citation Format

Share Document