scholarly journals Структура электронных состояний соединений Gd-=SUB=-5-=/SUB=-Sb-=SUB=-3-=/SUB=- и Gd-=SUB=-5-=/SUB=-Ge-=SUB=-2-=/SUB=-Sb по данным зонных расчетов и оптической спектроскопии

2022 ◽  
Vol 64 (3) ◽  
pp. 297
Author(s):  
Ю.В. Князев ◽  
А.В. Лукоянов ◽  
Ю.И. Кузьмин ◽  
S. Shanmukharao Samatham ◽  
Akhilesh Kumar Patel ◽  
...  

Results of investigations of the electronic structure and optical properties of Gd5Sb3 and Gd5Ge2Sb compounds are presented. Calculations of band spectra were carried out in frame of local density approximation with a correction for strong correlation effects in 4f shell of rare-earth ion (DFT+U+SO method). Optical constants of these materials were measured by ellipsometric technique in wide wavelength interval. Energy dependencies of a number of spectral parameters were determined. The nature of quantum light absorption is discussed on the base of comparative analysis of the experimental and calculated spectra of optical conductivity.

2016 ◽  
Vol 34 (1) ◽  
pp. 115-125 ◽  
Author(s):  
M. Caid ◽  
H. Rached ◽  
D. Rached ◽  
R. Khenata ◽  
S. Bin Omran ◽  
...  

AbstractThe structural, electronic and optical properties of (BeTe)n/(ZnSe)m superlattices have been computationally evaluated for different configurations with m = n and m≠n using the full-potential linear muffin-tin method. The exchange and correlation potentials are treated by the local density approximation (LDA). The ground state properties of (BeTe)n/(ZnSe)m binary compounds are determined and compared with the available data. It is found that the superlattice band gaps vary depending on the layers used. The optical constants, including the dielectric function ε(ω), the refractive index n(ω) and the refractivity R(ω), are calculated for radiation energies up to 35 eV.


CrystEngComm ◽  
2014 ◽  
Vol 16 (29) ◽  
pp. 6697-6706 ◽  
Author(s):  
Wei Gao ◽  
Hairong Zheng ◽  
Qingyan Han ◽  
Enjie He ◽  
Ruibo Wang

Rare earth ion-doped upconversion materials show great potential applications in optical and optoelectronic devices due to their novel optical properties.


2013 ◽  
Vol 27 (17) ◽  
pp. 1350127
Author(s):  
S. HADJI ◽  
S. BERRAH ◽  
H. ABID

In this paper, we present numerical calculations based on the full potential augmented plane wave (FP-LAPW) method within the local density approximation (LDA) to study the optical properties of the ternary alloy Al x Ga 1-x N . The shape of the dielectric function, the refractive index, and the absorption coefficient versus photon energy were presented. From the results, we deduce the possibility of this alloy to be used in the optoelectronic and photovololtaic area.


2021 ◽  
Vol 63 (6) ◽  
pp. 700
Author(s):  
Ю.В. Князев ◽  
А.В. Лукоянов ◽  
Ю.И. Кузьмин ◽  
А.Г. Кучин ◽  
С.П. Платонов

Results of investigations of electronic structure and optical properties of GdFeAl and GdFeSi compounds are presented. Spin-plarized density of states and interband optical conductivity spectra were calculated in frame of DFT+U technique with a correction for strong correlation effects in 4f shell of Gd. Optical properties were measured by ellipsometric technique in wavelength interval of 0.22 – 16 μm. Nature of quantum light absorption is discussed on the base of comparative analysis of experimental and calculated spectra. It is shown that main features of frequency dependencies of the optical conductivity are interpret qualitatively by the calculated density of electronic states.


2021 ◽  
Author(s):  
Dongmin Pak ◽  
Arindam Nandi ◽  
Michael Titze ◽  
Edward S Bielejec ◽  
Mahdi Hosseini

2008 ◽  
Vol 8 (3) ◽  
pp. 1126-1137 ◽  
Author(s):  
Xueyuan Chen ◽  
Liqin Liu ◽  
Guokui Liu

Research and development of nanoscale luminescent and laser materials are part of the rapidly advancing nanoscience and nanotechnology. Because of unique spectroscopic properties and luminescent dynamics of f-electron states, doping luminescent rare earth ions into nano-hosts has been demonstrated as an optimistic approach to developing highly efficient and stable nanophosphors for various applications. In this article, we review the most recent progress in spectroscopic measurements of rare earth ion-activated low-dimensional nanostructures including nanolayers, core–shells, nanowires, nanotubes, and nanodisks. Among a large volume of work reported in the literature on many members of the rare earth series including Ce3+, Pr3+, Nd3+, Eu3+, and Er3+, we focus on recent findings in the spectroscopic and luminescence properties of Eu3+ doped nanolayers, core–shells, and nanotubes, because Eu3+ ions have been extensively studied and widely used as an ideal probe for fundamental understanding of nano-phenomena. Specifically, the dependence of the optical properties of rare earth ions on nanostructures is discussed in detail.


1998 ◽  
Vol 4 (1) ◽  
pp. 95-108 ◽  
Author(s):  
J. Lermé ◽  
B. Palpant ◽  
B. Prével ◽  
E. Cottancin ◽  
M. Pellarin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document