scholarly journals Траекторный анализ в коллекторе с многоступенчатой рекуперацией энергии для прототипа гиротрона DEMO. Часть II. Тороидальное магнитное поле

2021 ◽  
Vol 91 (7) ◽  
pp. 1182
Author(s):  
О.И. Лукша ◽  
П.А. Трофимов ◽  
В.Н. Мануилов ◽  
М.Ю. Глявин

The results of modeling of a collector with four-stage recovery of the residual beam energy for the prototype gyrotron designed for the DEMO project are presented. For spatial separation of electrons with different energies, the azimuthal magnetic formed by a toroidal solenoid is used. An increase of the recovery efficiency and a decrease of the flow of electrons reflected from the collector are achieved by reducing the spread of radial position of the leading centers of electron trajectories at the optimal parameters of the toroidal solenoid, as well as by using a sectioned electron beam. Trajectory analysis of the spent beam with electron velocity and coordinate distributions close to those obtained in experiments with high-power gyrotrons showed the possibility of achieving an overall efficiency of the gyrotron higher than 80 %, which is close to the maximum efficiency at ideal separation of electron beam fractions with different energies.

2021 ◽  
Vol 2103 (1) ◽  
pp. 012058
Author(s):  
I Louksha ◽  
P A Trofimov ◽  
B D Usherenko

Abstract The results of modeling a collector with 4-stage recovery of residual electron energy for the SPbPU gyrotron with a frequency of 74.2 GHz and an output power of 100 kW are presented. For spatial separation of electrons with different energies, an azimuthal magnetic field created by a toroidal solenoid is used. An increase of the recovery efficiency and a decrease of the current of electrons reflected from the collector is achieved by reducing the spread of the radial position of the leading centers of electron trajectories at optimal parameters of the toroidal solenoid, as well as by using a sectioned electron beam. The trajectory analysis of the spent electron beam in the collector region showed the possibility of achieving the total efficiency of the gyrotron, close to 80%.


2021 ◽  
Vol 91 (1) ◽  
pp. 135
Author(s):  
О.И. Лукша ◽  
П.А. Трофимов ◽  
В.Н. Мануилов ◽  
М.Ю. Глявин

The results of modeling of collector for the gyrotron prototype being developed for the DEMO project are presented. A trajectory analysis in a collector with a 4-stage recovery of the residual beam energy based on the method of spatial separation of electrons in crossed azimuthal magnetic and axial electric fields was performed. In this part of the study, the formation of the azimuthal magnetic field was carried out using a conductor located on the axis of the device. The study was performed for a spent electron beam with a velocity and coordinate distribution of particles close to those obtained in experiments with powerful gyrotrons. Due to a thorough choice of the geometry of the collector sections, a total gyrotron efficiency of more than 80% was achieved, which is close to maximum efficiency with perfect separation of fractions of an electron beam with different energies. The data obtained will be used for development of a toroidal solenoid designed to create an azimuthal magnetic field.


2007 ◽  
Vol 13 (5) ◽  
pp. 354-357 ◽  
Author(s):  
Raynald Gauvin

The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the φ(ρz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe–B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.


1999 ◽  
Vol 5 (S2) ◽  
pp. 296-297
Author(s):  
Raynald Gauvin

It is well known that the interaction of the electron beam with the gas in the VP-SEM or ESEM generate the so-called skirt as a result of the elastic collisions between the electrons and the molecules. Since the electrons in the skirt hit the specimen far away from the electron beam, they degrade the resolution of the analyses performed in the VPSEM or ESEM. However, the magnitude and the shape of the skirt are still a matter of controversy despite the fundamental importance of knowing these two factors. In this context, a Monte Carlo program has been developed to simulate the interaction of the electron beam with a gas as a function of the gas composition, gas pressure, electron beam energy and working distance (in reality, we should talk of the total distance traveled by the electron beam in the gas). This Monte Carlo program used a single scattering approach considering elastic collisions only since energy loss is negligible owing to the low density of the gas. 10 millions electron trajectories have been simulated for each conditions.


Author(s):  
A. Buczkowski ◽  
Z. J. Radzimski ◽  
J. C. Russ ◽  
G. A. Rozgonyi

If a thickness of a semiconductor is smaller than the penetration depth of the electron beam, e.g. in silicon on insulator (SOI) structures, only a small portion of incident electrons energy , which is lost in a superficial silicon layer separated by the oxide from the substrate, contributes to the electron beam induced current (EBIC). Because the energy loss distribution of primary beam is not uniform and varies with beam energy, it is not straightforward to predict the optimum conditions for using this technique. Moreover, the energy losses in an ohmic or Schottky contact complicate this prediction. None of the existing theories, which are based on an assumption of a point-like region of electron beam generation, can be used satisfactorily on SOI structures. We have used a Monte Carlo technique which provide a simulation of the electron beam interactions with thin multilayer structures. The EBIC current was calculated using a simple one dimensional geometry, i.e. depletion layer separating electron- hole pairs spreads out to infinity in x- and y-direction. A point-type generation function with location being an actual location of an incident electron energy loss event has been assumed. A collection efficiency of electron-hole pairs was assumed to be 100% for carriers generated within the depletion layer, and inversely proportional to the exponential function of depth with the effective diffusion length as a parameter outside this layer. A series of simulations were performed for various thicknesses of superficial silicon layer. The geometries used for simulations were chosen to match the "real" samples used in the experimental part of this work. The theoretical data presented in Fig. 1 show how significandy the gain decreases with a decrease in superficial layer thickness in comparison with bulk material. Moreover, there is an optimum beam energy at which the gain reaches its maximum value for particular silicon thickness.


Author(s):  
D.P. Malta ◽  
M.L. Timmons

Measurement of the minority carrier diffusion length (L) can be performed by measurement of the rate of decay of excess minority carriers with the distance (x) of an electron beam excitation source from a p-n junction or Schottky barrier junction perpendicular to the surface in an SEM. In an ideal case, the decay is exponential according to the equation, I = Ioexp(−x/L), where I is the current measured at x and Io is the maximum current measured at x=0. L can be obtained from the slope of the straight line when plotted on a semi-logarithmic scale. In reality, carriers recombine not only in the bulk but at the surface as well. The result is a non-exponential decay or a sublinear semi-logarithmic plot. The effective diffusion length (Leff) measured is shorter than the actual value. Some improvement in accuracy can be obtained by increasing the beam-energy, thereby increasing the penetration depth and reducing the percentage of carriers reaching the surface. For materials known to have a high surface recombination velocity s (cm/sec) such as GaAs and its alloys, increasing the beam energy is insufficient. Furthermore, one may find an upper limit on beam energy as the diameter of the signal generation volume approaches the device dimensions.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-777-C7-778
Author(s):  
G. Fournier ◽  
J. Bonnet ◽  
J. Bridet ◽  
J. Fort ◽  
D. Pigache

2020 ◽  
Vol 62 (5) ◽  
pp. 055004 ◽  
Author(s):  
Guangyu Li ◽  
Quratul Ain ◽  
Song Li ◽  
Muhammad Saeed ◽  
Daniel Papp ◽  
...  

2001 ◽  
Vol 79 (2-3) ◽  
pp. 153-162 ◽  
Author(s):  
E Träbert ◽  
P Beiersdorfer ◽  
K B Fournier ◽  
S B Utter ◽  
K L Wong

Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra (20 to 60 Å) of Au with well-defined maximum charge states ranging from Br- to Co-like ions. Guided by large-scale relativistic atomic structure calculations, the strongest Δn = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions (Au42+ – Au50+) have been identified. PACS Nos.: 32.30Rj, 39.30+w, 31.50+w, 32.20R


Nature ◽  
2021 ◽  
Vol 599 (7886) ◽  
pp. 565-570
Author(s):  
M. Khachatryan ◽  
A. Papadopoulou ◽  
A. Ashkenazi ◽  
F. Hauenstein ◽  
A. Nambrath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document