Modelling of resistive pulse sensing: flexible methods for submicron particles

2014 ◽  
Vol 55 ◽  
pp. 197 ◽  
Author(s):  
Geoff Willmott
2014 ◽  
Vol 55 (3) ◽  
pp. 197-213 ◽  
Author(s):  
G. R. WILLMOTT ◽  
B. G. SMITH

AbstractNanopore science, the study of individual nanoscale pores within thin membranes, is a fast-growing field which presents numerous interesting problems for physicists and applied mathematicians. Nanopores are most commonly applied to resistive pulse sensing (RPS) of individual particles suspended in aqueous electrolyte. The form of a resistive pulse is dependent on an array of experimental variables, including electrolyte characteristics, electrophoretic and convective transport, and (especially) pore and particle geometry. The level of analysis required depends on the application, but any broadly useful approach should be simple and flexible, due to the requirement for high data throughput and variations between different experimental systems and specimens. Here we review analytic methods for interpreting RPS experiments for particles in the approximate range 100 nm to 1 $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mu $m, focusing on calculation of resistance change as a function of the particle’s position. We detail a recently developed semi-analytical model and compare the modelled electric field with finite element results. The model can also be used to calculate particle motion, so that the experimental current–time history can be reconstructed. This approach is useful for a wide range of pore and particle geometries, and includes consideration of entrance effects. Tunable elastomeric pores with truncated linear cone geometry are used as a model system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249603
Author(s):  
Michael Cimorelli ◽  
Rienk Nieuwland ◽  
Zoltán Varga ◽  
Edwin van der Pol

The particle size distribution (PSD) of extracellular vesicles (EVs) and other submicron particles in biofluids is commonly measured by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). A new technique for measuring the PSD is microfluidic resistive pulse sensing (MRPS). Because specific guidelines for measuring EVs together with other particles in biofluids with MRPS are lacking, we developed an operating procedure to reproducibly measure the PSD. The PSDs of particles in human plasma, conditioned medium of PC3 prostate cancer cell line (PC3 CM), and human urine were measured with MRPS (nCS1, Spectradyne LLC) to investigate: (i) the optimal diluent that reduces the interfacial tension of the sample while keeping EVs intact, (ii) the lower limit of detection (LoD) of particle size, (iii) the reproducibility of the PSD, (iv) the optimal dilution for measuring the PSD, and (v) the agreement in measured concentration between microfluidic cartridges with overlapping detection ranges. We found that the optimal diluent is 0.1% bovine serum albumin (w/v) in Dulbecco’s phosphate-buffered saline. Based on the shape of the PSD, which is expected to follow a power-law function within the full detection range, we obtained a lower LoD of 75 nm for plasma and PC3 CM and 65 nm for urine. Normalized PSDs are reproducible (R2 > 0.950) at dilutions between 10–100x for plasma, 5–20x for PC3 CM, and 2–4x for urine. Furthermore, sample dilution does not impact the dilution-corrected concentration when the microfluidic cartridges are operated within their specified concentration ranges. PSDs from microfluidic cartridges with overlapping detection ranges agreed well (R2 > 0.936) and when combined the overall PSD spanned 5 orders of magnitude of measured concentration. Based on these findings, we have developed operating guidelines to reproducibly measure the PSD of EVs together with other particles in biofluids with MRPS.


2021 ◽  
Vol 6 (1) ◽  
pp. 59-67
Author(s):  
Durdane Yilmaz ◽  
Dila Kaya ◽  
Kaan Kececi ◽  
Ali Dinler

ACS Nano ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 8857-8869 ◽  
Author(s):  
Jingjie Sha ◽  
Tawfique Hasan ◽  
Silvia Milana ◽  
Cristina Bertulli ◽  
Nicholas A. W. Bell ◽  
...  

2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Yuejun Zhao ◽  
David B. Bober ◽  
Chuan-Hua Chen

Sign in / Sign up

Export Citation Format

Share Document