scholarly journals The Impact of Personality Factors and Preceding User Comments on the Processing of Research Findings on Deep Brain Stimulation: A Randomized Controlled Experiment in a Simulated Online Forum

2016 ◽  
Vol 18 (3) ◽  
pp. e59 ◽  
Author(s):  
Insa Feinkohl ◽  
Danny Flemming ◽  
Ulrike Cress ◽  
Joachim Kimmerle
2021 ◽  
Vol 19 ◽  
Author(s):  
Yu Jin Jung ◽  
Han-Joon Kim ◽  
Sun Ha Paek ◽  
Beomseok Jeon

: Sleep-wake disturbances (SWD) are one of the most common non-motor symptoms in Parkinson's disease (PD) and can appear in the early stage even before the onset of motor symptoms. Deep brain stimulation (DBS) is an established treatment for the motor symptoms in patients with advanced PD. However, the effect of DBS on SWD and its specific mechanisms are not widely understood and remain controversial. In addition to the circuit-mediated direct effect, DBS may improve SWD by an indirect effect such as the resolution of nocturnal motor complications and a reduction of dopaminergic medication. Here, the authors review the recent literatures regarding the impact of DBS on SWD in patients with PD. Furthermore, the selection of the DBS targets and the specific effects of applying DBS to each target on SWD in PD are also discussed.


2009 ◽  
Vol 110 (6) ◽  
pp. 1283-1290 ◽  
Author(s):  
Ludvic Zrinzo ◽  
Arjen L. J. van Hulzen ◽  
Alessandra A. Gorgulho ◽  
Patricia Limousin ◽  
Michiel J. Staal ◽  
...  

Object The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images. Results The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean ± SD and the 95% CI of the mean was 1.5 ± 1.0 and 0.1 mm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 ± 0.7 and 0.1 mm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 ± 1.1 and 0.3 mm; p < 0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between an increased requirement for multiple brain passes and ventricular involvement in the trajectory (p < 0.01). Conclusions Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target as defined by clinical and physiological observations.


2014 ◽  
Vol 4 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Lisa Klingelhoefer ◽  
Michael Samuel ◽  
K. Ray Chaudhuri ◽  
Keyoumars Ashkan

2019 ◽  
Vol 11 (2) ◽  
pp. 199-204
Author(s):  
Alby Richard ◽  
Joey Hsu ◽  
Patricia Baum ◽  
Ron Alterman ◽  
David K. Simon

Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disease due to mutation of the VPS13A gene encoding the protein chorein. ChAc is a slowly progressive disorder that typically presents in early adulthood, and whose clinical features include chorea and dystonia with involuntary lip, cheek, and tongue biting. Some patients also have seizures. Treatment for ChAc is symptomatic. A small number of ChAc patients have been treated with bilateral deep brain stimulation (DBS) of the globus pallidus interna (GPi), and we now present an additional case. Patient chart, functional measures, and laboratory findings were reviewed from the time of ChAc diagnosis until 6 months after DBS surgery. Here, we present a case of ChAc in a 31-year-old male positive for VPS13A gene mutations who presented with chorea, tongue biting, dysarthria, weight loss, and mild cognitive dysfunction. DBS using monopolar stimulation with placement slightly lateral to the GPi was associated with significant improvement in chorea and dysarthria. This case adds to the current state of knowledge regarding the efficacy and safety of bilateral GPi-DBS for symptomatic control of drug-resistant hyperkinetic movements seen in ChAc. Controlled trials are needed to better assess the impact and ideal target of DBS in ChAc.


2019 ◽  
Vol 132 ◽  
pp. e487-e495
Author(s):  
Ryan B. Kochanski ◽  
Sander Bus ◽  
Bledi Brahimaj ◽  
Alireza Borghei ◽  
Kristen L. Kraimer ◽  
...  

Author(s):  
A Richard ◽  
R Alterman ◽  
D Simon

Background: Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disease due to mutation of the VPS13A gene encoding the protein chorein. ChAc is a slowly progressive disorder that typically presents in early adulthood, and whose clinical features include chorea and dystonia with involuntary lip, cheek and tongue biting. Some patients also have seizures. Treatment for ChAc is symptomatic. A small number of ChAc patients have been treated with bilateral deep brain stimulation (DBS) of the globus pallidus interna (GPi), and we now present an additional case. Methods: Patient chart, functional measures, and laboratory findings were reviewed from the time of ChAc diagnosis until 6 months after deep brain stimulation (DBS) surgery. Results: Here we present a case of ChAc in a 31 year old male positive for VPS13A gene muations who presented with chorea, tongue biting, dysarthria, weight loss, and mild cognitive dysfunction. GPi-DBS using monopolar stimulation was associated with significant improvement in chorea and dysarthria. Conclusions: This case adds to the current state of knowledge regarding the efficacy and safety of bilateral GPi-DBS for symptomatic control of drug-resistant hyperkinetic movements seen in ChAc. Controlled trials are needed to better assess the impact of DBS in ChAc.


Sign in / Sign up

Export Citation Format

Share Document