Genomic Privacy: Performance Analysis, Open Issues and Future Research Directions (Preprint)

2019 ◽  
Author(s):  
Shamila Mohammed

BACKGROUND In the past decade, importance of genomic data has been increased in medical research. The cost of genomic sequencing is reducing day by day we can include genomic data in routine medical care. This data is being used to detect/ prevent inherited diseases. But using this data in research purpose may increase the chance of leakage privacy or genetic information (sensitive information of individuals) to unidentified users. In current, many issues and challenges exist in preserving privacy of genomic data. In general, Identity Tracing attack, completion attack and attribute disclosure attack are three attacks (mitigated) on genomic data (in-current). Also, accessing and integrating genomic is difficult to handle and analysis to make a useful decision for future. This paper discusses about the available sequencing methods (for genomic data), where and how genomic data will be useful in prediction (i.e., in various applications). And also provide a picture of future using genomic analytics for extracting useful patterns from this data.Note that many attempts have been made towards this topic but all existed worksare strictly rule based, i.e., has no quantitative measurement of the risk of privacy breaches (genotype and phenotype information). Here, privacy-preserving linkage of genotype and phenotype information (across different locations) means genotypes stored in a sequencing facility and phenotypes stored in an electronic health record. This article discusses about several aspects in genomic privacy, with a focus on security vulnerabilities identified by them and their (possible) suggested solutions. In this article, we focus to accelerate discoveries using best prediction tools with explaining a clear cut approach, i.e., we need to protect genomic data or not or it is just a myth. In last, we listed several genomic data protection techniques against re-identification attacks and systematic comparison of existing genomic privacy preserving methodologies (attempts made by several researchers in the previous decade) in Appendix A. OBJECTIVE importance of genomic data existing genomic data privacy preservation methods comparison METHODS Re- identification Cryptographic RESULTS Comparison of different methods CONCLUSIONS Privacy is a sensitive issue and need to be protected from outsider world/ from malicious (unidentified) users. Towards this serious concern, in this article we have shared several useful suggestions, opinions with respect to genomic data (also other type of data). This paper has started with introduction to genomic data (also its characteristics), to its scope/ importance in medical care. We highlighted the related works done towards this area. We also explained evolution of genomic sequencing and various metrics to measure the performance. Later we explained the importance of genomic data in terms of where this data is useful and why it is useful with the help of one use case. Then we described how genomic data is different from other types of big data. Later, we have discussed several serious concerns, challenges, and research gaps and have provided some opportunity to the future researchers (in genomic privacy). In this article we also make a comparison between genomic privacy and other types of privacy (in brief). Hence, we find out that privacy especially genomic is necessary to protect and require attention form research communities. We request to computer science community to provide/ make/ develop some techniques for data privacy and confidentiality protection, which work/ use on real –world problems/ tested.

Author(s):  
Salheddine Kabou ◽  
Sidi mohamed Benslimane ◽  
Mhammed Mosteghanemi

Many organizations, especially small and medium business (SMB) enterprises require the collection and sharing of data containing personal information. The privacy of this data must be preserved before outsourcing to the commercial public. Privacy preserving data publishing PPDP refers to the process of publishing useful information while preserving data privacy. A variety of approaches have been proposed to ensure privacy by applying traditional anonymization models which focused only on the single publication of datasets. In practical applications, data publishing is more complicated where the organizations publish multiple times for different recipients or after modifications to provide up-to-date data. Privacy preserving dynamic data publication PPDDP is a new process in privacy preservation which addresses the anonymization of the data for different purposes. In this survey, the author will systematically evaluate and summarize different studies to PPDDP, clarify the differences and requirements between the scenarios that can exist, and propose future research directions.


2014 ◽  
Vol 556-562 ◽  
pp. 3532-3535
Author(s):  
Heng Li ◽  
Xue Fang Wu

With the rapid development of computer technology and the popularity of the network, database scale, scope and depth of the constantly expanding, which has accumulated vast amounts of different forms of stored data. The use of data mining technology can access valuable information from a lot of data. Privacy preserving has been one of the greater concerns in data mining. Privacy preserving data mining has a rapid development in a short year. But it still faces many challenges in the future. A number of methods and techniques have been developed for privacy preserving data mining. This paper analyzed the representative techniques for privacy preservation. Finally the present problems and directions for future research are discussed.


Author(s):  
Salheddine Kabou ◽  
Sidi mohamed Benslimane ◽  
Mhammed Mosteghanemi

Many organizations, especially small and medium business (SMB) enterprises require the collection and sharing of data containing personal information. The privacy of this data must be preserved before outsourcing to the commercial public. Privacy preserving data publishing PPDP refers to the process of publishing useful information while preserving data privacy. A variety of approaches have been proposed to ensure privacy by applying traditional anonymization models which focused only on the single publication of datasets. In practical applications, data publishing is more complicated where the organizations publish multiple times for different recipients or after modifications to provide up-to-date data. Privacy preserving dynamic data publication PPDDP is a new process in privacy preservation which addresses the anonymization of the data for different purposes. In this survey, the author will systematically evaluate and summarize different studies to PPDDP, clarify the differences and requirements between the scenarios that can exist, and propose future research directions.


Author(s):  
Shivlal Mewada ◽  
Sita Sharan Gautam ◽  
Pradeep Sharma

A large amount of data is generated through healthcare applications and medical equipment. This data is transferred from one piece of equipment to another and sometimes also communicated over a global network. Hence, security and privacy preserving are major concerns in the healthcare sector. It is seen that traditional anonymization algorithms are viable for sanitization process, but not for restoration task. In this work, artificial bee colony-based privacy preserving model is developed to address the aforementioned issues. In the proposed model, ABC-based algorithm is adopted to generate the optimal key for sanitization of sensitive information. The effectiveness of the proposed model is tested through restoration analysis. Furthermore, several popular attacks are also considered for evaluating the performance of the proposed privacy preserving model. Simulation results of the proposed model are compared with some popular existing privacy preserving models. It is observed that the proposed model is capable of preserving the sensitive information in an efficient manner.


Author(s):  
Anastasiia Pika ◽  
Moe T. Wynn ◽  
Stephanus Budiono ◽  
Arthur H.M. ter Hofstede ◽  
Wil M.P. van der Aalst ◽  
...  

Process mining has been successfully applied in the healthcare domain and has helped to uncover various insights for improving healthcare processes. While the benefits of process mining are widely acknowledged, many people rightfully have concerns about irresponsible uses of personal data. Healthcare information systems contain highly sensitive information and healthcare regulations often require protection of data privacy. The need to comply with strict privacy requirements may result in a decreased data utility for analysis. Until recently, data privacy issues did not get much attention in the process mining community; however, several privacy-preserving data transformation techniques have been proposed in the data mining community. Many similarities between data mining and process mining exist, but there are key differences that make privacy-preserving data mining techniques unsuitable to anonymise process data (without adaptations). In this article, we analyse data privacy and utility requirements for healthcare process data and assess the suitability of privacy-preserving data transformation methods to anonymise healthcare data. We demonstrate how some of these anonymisation methods affect various process mining results using three publicly available healthcare event logs. We describe a framework for privacy-preserving process mining that can support healthcare process mining analyses. We also advocate the recording of privacy metadata to capture information about privacy-preserving transformations performed on an event log.


Author(s):  
Nancy Victor ◽  
Daphne Lopez

Data privacy plays a noteworthy part in today's digital world where information is gathered at exceptional rates from different sources. Privacy preserving data publishing refers to the process of publishing personal data without questioning the privacy of individuals in any manner. A variety of approaches have been devised to forfend consumer privacy by applying traditional anonymization mechanisms. But these mechanisms are not well suited for Big Data, as the data which is generated nowadays is not just structured in manner. The data which is generated at very high velocities from various sources includes unstructured and semi-structured information, and thus becomes very difficult to process using traditional mechanisms. This chapter focuses on the various challenges with Big Data, PPDM and PPDP techniques for Big Data and how well it can be scaled for processing both historical and real-time data together using Lambda architecture. A distributed framework for privacy preservation in Big Data by combining Natural language processing techniques is also proposed in this chapter.


2019 ◽  
Vol 23 (1) ◽  
pp. 421-452 ◽  
Author(s):  
Yongfeng Wang ◽  
Zheng Yan ◽  
Wei Feng ◽  
Shushu Liu

AbstractThe unprecedented proliferation of mobile smart devices has propelled a promising computing paradigm, Mobile Crowd Sensing (MCS), where people share surrounding insight or personal data with others. As a fast, easy, and cost-effective way to address large-scale societal problems, MCS is widely applied into many fields, e.g., environment monitoring, map construction, public safety, etc. Despite the popularity, the risk of sensitive information disclosure in MCS poses a serious threat to the participants and limits its further development in privacy-sensitive fields. Thus, the research on privacy protection in MCS becomes important and urgent. This paper targets the privacy issues of MCS and conducts a comprehensive literature research on it by providing a thorough survey. We first introduce a typical system structure of MCS, summarize its characteristics, propose essential requirements on privacy on the basis of a threat model. Then, we survey existing solutions on privacy protection and evaluate their performances by employing the proposed requirements. In essence, we classify the privacy protection schemes into four categories with regard to identity privacy, data privacy, attribute privacy, and task privacy. Besides, we review the achievements on privacy-preserving incentives in MCS from four viewpoints of incentive measures: credit incentive, auction incentive, currency incentive, and reputation incentive. Finally, we point out some open issues and propose future research directions based on the findings from our survey.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2109
Author(s):  
Liming Fang ◽  
Minghui Li ◽  
Lu Zhou ◽  
Hanyi Zhang ◽  
Chunpeng Ge

A smart watch is a kind of emerging wearable device in the Internet of Things. The security and privacy problems are the main obstacles that hinder the wide deployment of smart watches. Existing security mechanisms do not achieve a balance between the privacy-preserving and data access control. In this paper, we propose a fine-grained privacy-preserving access control architecture for smart watches (FPAS). In FPAS, we leverage the identity-based authentication scheme to protect the devices from malicious connection and policy-based access control for data privacy preservation. The core policy of FPAS is two-fold: (1) utilizing a homomorphic and re-encrypted scheme to ensure that the ciphertext information can be correctly calculated; (2) dividing the data requester by different attributes to avoid unauthorized access. We present a concrete scheme based on the above prototype and analyze the security of the FPAS. The performance and evaluation demonstrate that the FPAS scheme is efficient, practical, and extensible.


2021 ◽  
Author(s):  
Rohit Ravindra Nikam ◽  
Rekha Shahapurkar

Data mining is a technique that explores the necessary data is extracted from large data sets. Privacy protection of data mining is about hiding the sensitive information or identity of breach security or without losing data usability. Sensitive data contains confidential information about individuals, businesses, and governments who must not agree upon before sharing or publishing his privacy data. Conserving data mining privacy has become a critical research area. Various evaluation metrics such as performance in terms of time efficiency, data utility, and degree of complexity or resistance to data mining techniques are used to estimate the privacy preservation of data mining techniques. Social media and smart phones produce tons of data every minute. To decision making, the voluminous data produced from the different sources can be processed and analyzed. But data analytics are vulnerable to breaches of privacy. One of the data analytics frameworks is recommendation systems commonly used by e-commerce sites such as Amazon, Flip Kart to recommend items to customers based on their purchasing habits that lead to characterized. This paper presents various techniques of privacy conservation, such as data anonymization, data randomization, generalization, data permutation, etc. such techniques which existing researchers use. We also analyze the gap between various processes and privacy preservation methods and illustrate how to overcome such issues with new innovative methods. Finally, our research describes the outcome summary of the entire literature.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Wang ◽  
Hongtao Li ◽  
Feng Guo ◽  
Wenyin Zhang ◽  
Yifeng Cui

As a novel and promising technology for 5G networks, device-to-device (D2D) communication has garnered a significant amount of research interest because of the advantages of rapid sharing and high accuracy on deliveries as well as its variety of applications and services. Big data technology offers unprecedented opportunities and poses a daunting challenge to D2D communication and sharing, where the data often contain private information concerning users or organizations and thus are at risk of being leaked. Privacy preservation is necessary for D2D services but has not been extensively studied. In this paper, we propose an (a, k)-anonymity privacy-preserving framework for D2D big data deployed on MapReduce. Firstly, we provide a framework for the D2D big data sharing and analyze the threat model. Then, we propose an (a, k)-anonymity privacy-preserving framework for D2D big data deployed on MapReduce. In our privacy-preserving framework, we adopt (a, k)-anonymity as privacy-preserving model for D2D big data and use the distributed MapReduce to classify and group data for massive datasets. The results of experiments and theoretical analysis show that our privacy-preserving algorithm deployed on MapReduce is effective for D2D big data privacy protection with less information loss and computing time.


Sign in / Sign up

Export Citation Format

Share Document