scholarly journals Dynamic Panel Surveillance of COVID-19 Transmission in the United States to Inform Health Policy: Observational Statistical Study (Preprint)

Author(s):  
James Francis Oehmke ◽  
Charles B Moss ◽  
Lauren Nadya Singh ◽  
Theresa Bristol Oehmke ◽  
Lori Ann Post

BACKGROUND The Great COVID-19 Shutdown aimed to eliminate or slow the spread of SARS-CoV-2, the virus that causes COVID-19. The United States has no national policy, leaving states to independently implement public health guidelines that are predicated on a sustained decline in COVID-19 cases. Operationalization of “sustained decline” varies by state and county. Existing models of COVID-19 transmission rely on parameters such as case estimates or R<sub>0</sub> and are dependent on intensive data collection efforts. Static statistical models do not capture all of the relevant dynamics required to measure sustained declines. Moreover, existing COVID-19 models use data that are subject to significant measurement error and contamination. OBJECTIVE This study will generate novel metrics of speed, acceleration, jerk, and 7-day lag in the speed of COVID-19 transmission using state government tallies of SARS-CoV-2 infections, including state-level dynamics of SARS-CoV-2 infections. This study provides the prototype for a global surveillance system to inform public health practice, including novel standardized metrics of COVID-19 transmission, for use in combination with traditional surveillance tools. METHODS Dynamic panel data models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique allows for the control of a variety of deficiencies in the existing data. Tests of the validity of the model and statistical techniques were applied. RESULTS The statistical approach was validated based on the regression results, which determined recent changes in the pattern of infection. During the weeks of August 17-23 and August 24-30, 2020, there were substantial regional differences in the evolution of the US pandemic. Census regions 1 and 2 were relatively quiet with a small but significant persistence effect that remained relatively unchanged from the prior 2 weeks. Census region 3 was sensitive to the number of tests administered, with a high constant rate of cases. A weekly special analysis showed that these results were driven by states with a high number of positive test reports from universities. Census region 4 had a high constant number of cases and a significantly increased persistence effect during the week of August 24-30. This change represents an increase in the transmission model R value for that week and is consistent with a re-emergence of the pandemic. CONCLUSIONS Reopening the United States comes with three certainties: (1) the “social” end of the pandemic and reopening are going to occur before the “medical” end even while the pandemic is growing. We need improved standardized surveillance techniques to inform leaders when it is safe to open sections of the country; (2) varying public health policies and guidelines unnecessarily result in varying degrees of transmission and outbreaks; and (3) even those states most successful in containing the pandemic continue to see a small but constant stream of new cases daily.

10.2196/21955 ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. e21955 ◽  
Author(s):  
James Francis Oehmke ◽  
Charles B Moss ◽  
Lauren Nadya Singh ◽  
Theresa Bristol Oehmke ◽  
Lori Ann Post

Background The Great COVID-19 Shutdown aimed to eliminate or slow the spread of SARS-CoV-2, the virus that causes COVID-19. The United States has no national policy, leaving states to independently implement public health guidelines that are predicated on a sustained decline in COVID-19 cases. Operationalization of “sustained decline” varies by state and county. Existing models of COVID-19 transmission rely on parameters such as case estimates or R0 and are dependent on intensive data collection efforts. Static statistical models do not capture all of the relevant dynamics required to measure sustained declines. Moreover, existing COVID-19 models use data that are subject to significant measurement error and contamination. Objective This study will generate novel metrics of speed, acceleration, jerk, and 7-day lag in the speed of COVID-19 transmission using state government tallies of SARS-CoV-2 infections, including state-level dynamics of SARS-CoV-2 infections. This study provides the prototype for a global surveillance system to inform public health practice, including novel standardized metrics of COVID-19 transmission, for use in combination with traditional surveillance tools. Methods Dynamic panel data models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique allows for the control of a variety of deficiencies in the existing data. Tests of the validity of the model and statistical techniques were applied. Results The statistical approach was validated based on the regression results, which determined recent changes in the pattern of infection. During the weeks of August 17-23 and August 24-30, 2020, there were substantial regional differences in the evolution of the US pandemic. Census regions 1 and 2 were relatively quiet with a small but significant persistence effect that remained relatively unchanged from the prior 2 weeks. Census region 3 was sensitive to the number of tests administered, with a high constant rate of cases. A weekly special analysis showed that these results were driven by states with a high number of positive test reports from universities. Census region 4 had a high constant number of cases and a significantly increased persistence effect during the week of August 24-30. This change represents an increase in the transmission model R value for that week and is consistent with a re-emergence of the pandemic. Conclusions Reopening the United States comes with three certainties: (1) the “social” end of the pandemic and reopening are going to occur before the “medical” end even while the pandemic is growing. We need improved standardized surveillance techniques to inform leaders when it is safe to open sections of the country; (2) varying public health policies and guidelines unnecessarily result in varying degrees of transmission and outbreaks; and (3) even those states most successful in containing the pandemic continue to see a small but constant stream of new cases daily.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Margaret M. Padek ◽  
Stephanie Mazzucca ◽  
Peg Allen ◽  
Emily Rodriguez Weno ◽  
Edward Tsai ◽  
...  

Abstract Background Much of the disease burden in the United States is preventable through application of existing knowledge. State-level public health practitioners are in ideal positions to affect programs and policies related to chronic disease, but the extent to which mis-implementation occurring with these programs is largely unknown. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Methods A 2018 comprehensive survey assessing the extent of mis-implementation and multi-level influences on mis-implementation was reported by state health departments (SHDs). Questions were developed from previous literature. Surveys were emailed to randomly selected SHD employees across the Unites States. Spearman’s correlation and multinomial logistic regression were used to assess factors in mis-implementation. Results Half (50.7%) of respondents were chronic disease program managers or unit directors. Forty nine percent reported that programs their SHD oversees sometimes, often or always continued ineffective programs. Over 50% also reported that their SHD sometimes or often ended effective programs. The data suggest the strongest correlates and predictors of mis-implementation were at the organizational level. For example, the number of organizational layers impeded decision-making was significant for both continuing ineffective programs (OR=4.70; 95% CI=2.20, 10.04) and ending effective programs (OR=3.23; 95% CI=1.61, 7.40). Conclusion The data suggest that changing certain agency practices may help in minimizing the occurrence of mis-implementation. Further research should focus on adding context to these issues and helping agencies engage in appropriate decision-making. Greater attention to mis-implementation should lead to greater use of effective interventions and more efficient expenditure of resources, ultimately to improve health outcomes.


2021 ◽  
Author(s):  
Margaret Padek ◽  
Stephanie Mazzucca ◽  
Peg Allen ◽  
Emily Rodriguez Weno ◽  
Edward Tsai ◽  
...  

Abstract Background: Much of the disease burden in the United States is preventable through application of existing knowledge. State-level public health practitioners are in ideal positions to affect programs and policies related to chronic disease, but the extent to which mis-implementation occurring with these programs is largely unknown. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Methods: A 2018 comprehensive survey assessing the extent of mis-implementation and multi-level influences on mis-implementation was reported by state health departments (SHDs). Questions were developed from previous literature. Surveys were emailed to randomly selected SHD employees across the Unites States. Spearman’s correlation and multinomial logistic regression were used to assess factors in mis-implementation. Results: Half (50.7%) of respondents were chronic disease program managers or unit directors. Forty nine percent reported that programs their SHD oversees sometimes, often or always continued ineffective programs. Over 50% also reported that their SHD sometimes or often ended effective programs. The data suggest the strongest correlates and predictors of mis-implementation were at the organizational level. For example, the number of organizational layers impeded decision-making was significant for both continuing ineffective programs (OR=4.70; 95% CI=2.20, 10.04) and ending effective programs (OR=3.23; 95% CI=1.61, 7.40). Conclusion: The data suggest that changing certain agency practices may help in minimizing the occurrence of mis-implementation. Further research should focus on adding context to these issues and helping agencies engage in appropriate decision-making. Greater attention to mis-implementation should lead to greater use of effective interventions and more efficient expenditure of resources, ultimately to improve health outcomes.


2021 ◽  
pp. e1-e7
Author(s):  
Randall L. Sell ◽  
Elise I. Krims

Public health surveillance can have profound impacts on the health of populations, with COVID-19 surveillance offering an illuminating example. Surveillance surrounding COVID-19 testing, confirmed cases, and deaths has provided essential information to public health professionals about how to minimize morbidity and mortality. In the United States, surveillance has also pointed out how populations, on the basis of geography, age, and race and ethnicity, are being impacted disproportionately, allowing targeted intervention and evaluation. However, COVID-19 surveillance has also highlighted how the public health surveillance system fails some communities, including sexual and gender minorities. This failure has come about because of the haphazard and disorganized way disease reporting data are collected, analyzed, and reported in the United States, and the structural homophobia, transphobia, and biphobia acting within these systems. We provide recommendations for addressing these concerns after examining experiences collecting race data in COVID-19 surveillance and attempts in Pennsylvania and California to incorporate sexual orientation and gender identity variables into their pandemic surveillance efforts. (Am J Public Health. Published online ahead of print June 10, 2021: e1–e7. https://doi.org/10.2105/AJPH.2021.3062727 )


Author(s):  
James Francis Oehmke ◽  
Theresa B Oehmke ◽  
Lauren Nadya Singh ◽  
Lori Ann Post

BACKGROUND SARS-CoV-2, the novel coronavirus that causes COVID-19, is a global pandemic with higher mortality and morbidity than any other virus in the last 100 years. Without public health surveillance, policy makers cannot know where and how the disease is accelerating, decelerating, and shifting. Unfortunately, existing models of COVID-19 contagion rely on parameters such as the basic reproduction number and use static statistical methods that do not capture all the relevant dynamics needed for surveillance. Existing surveillance methods use data that are subject to significant measurement error and other contaminants. OBJECTIVE The aim of this study is to provide a proof of concept of the creation of surveillance metrics that correct for measurement error and data contamination to determine when it is safe to ease pandemic restrictions. We applied state-of-the-art statistical modeling to existing internet data to derive the best available estimates of the state-level dynamics of COVID-19 infection in the United States. METHODS Dynamic panel data (DPD) models were estimated with the Arellano-Bond estimator using the generalized method of moments. This statistical technique enables control of various deficiencies in a data set. The validity of the model and statistical technique was tested. RESULTS A Wald chi-square test of the explanatory power of the statistical approach indicated that it is valid (χ<sup>2</sup><sub>10</sub>=1489.84, <i>P</i>&lt;.001), and a Sargan chi-square test indicated that the model identification is valid (χ<sup>2</sup><sub>946</sub>=935.52, <i>P</i>=.59). The 7-day persistence rate for the week of June 27 to July 3 was 0.5188 (<i>P</i>&lt;.001), meaning that every 10,000 new cases in the prior week were associated with 5188 cases 7 days later. For the week of July 4 to 10, the 7-day persistence rate increased by 0.2691 (<i>P</i>=.003), indicating that every 10,000 new cases in the prior week were associated with 7879 new cases 7 days later. Applied to the reported number of cases, these results indicate an increase of almost 100 additional new cases per day per state for the week of July 4-10. This signifies an increase in the reproduction parameter in the contagion models and corroborates the hypothesis that economic reopening without applying best public health practices is associated with a resurgence of the pandemic. CONCLUSIONS DPD models successfully correct for measurement error and data contamination and are useful to derive surveillance metrics. The opening of America involves two certainties: the country will be COVID-19–free only when there is an effective vaccine, and the “social” end of the pandemic will occur before the “medical” end. Therefore, improved surveillance metrics are needed to inform leaders of how to open sections of the United States more safely. DPD models can inform this reopening in combination with the extraction of COVID-19 data from existing websites.


2020 ◽  
Author(s):  
Margaret Padek ◽  
Stephanie Mazzucca ◽  
Peg Allen ◽  
Emily Rodriguez Weno ◽  
Edward Tsai ◽  
...  

Abstract Background: Much of the disease burden in the United States is preventable through application of existing knowledge. State-level public health practitioners are in ideal positions to affect programs and policies related to chronic disease, but the extent to which mis-implementation occurring with these programs is largely unknown. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Methods: A 2018 comprehensive survey assessing the extent of mis-implementation and multi-level influences on mis-implementation was reported by state health departments (SHDs). Questions were developed from previous literature. Surveys were emailed to randomly selected SHD employees across the Unites States. Spearman’s correlation and multinomial logistic regression were used to assess factors in mis-implementation. Results: Half (50.7%) of respondents were chronic disease program managers or unit directors. Forty nine percent reported that programs their SHD oversees sometimes, often or always continued ineffective programs. Over 50% also reported that their SHD sometimes or often ended effective programs. The data suggest the strongest correlates and predictors of mis-implementation were at the organizational level. For example, the number of organizational layers impeded decision-making was significant for both continuing ineffective programs (OR=4.70; 95% CI=2.20, 10.04) and ending effective programs (OR=3.23; 95% CI=1.61, 7.40). Conclusion: The data suggest that changing certain agency practices may help in minimizing the occurrence of mis-implementation. Further research should focus on adding context to these issues and helping agencies engage in appropriate decision-making. Greater attention to mis-implementation should lead to greater use of effective interventions and more efficient expenditure of resources, ultimately to improve health outcomes.


Author(s):  
Alice H Lichtenstein ◽  
Allison Karpyn

Serving as a cornerstone of dietary policy in the United States, the Dietary Guidelines for Americans (DGAs) provide an important foundation for understanding the programs and policies that influence public health practice. In this chapter, we review the emergence and development of the guidelines beginning with their evolution from the Dietary Goals for Americans and moving through various iterations from 1980 until the current era in 2015. Topics include concrete reporting on recommendations, evolving principles of a healthy diet, and a discussion of controversies borne by industry lobbying groups and government mandates.


2016 ◽  
Vol 22 (3) ◽  
pp. E1-E8 ◽  
Author(s):  
Cara T. Mai ◽  
Russell S. Kirby ◽  
Adolfo Correa ◽  
Deborah Rosenberg ◽  
Michael Petros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document