scholarly journals Automatically Explaining Machine Learning Prediction Results on Asthma Hospital Visits in Patients With Asthma: Secondary Analysis (Preprint)

2020 ◽  
Author(s):  
Gang Luo ◽  
Michael D Johnson ◽  
Flory L Nkoy ◽  
Shan He ◽  
Bryan L Stone

BACKGROUND Asthma is a major chronic disease that poses a heavy burden on health care. To facilitate the allocation of care management resources aimed at improving outcomes for high-risk patients with asthma, we recently built a machine learning model to predict asthma hospital visits in the subsequent year in patients with asthma. Our model is more accurate than previous models. However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for use in care management, where interpretability is desired. OBJECTIVE This study aims to develop a method to automatically explain the prediction results of the model and recommend tailored interventions without lowering the performance measures of the model. METHODS Our data were imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To handle imbalanced data, we extended our previous method of automatically offering rule-formed explanations for the prediction results of any machine learning model on tabular data without lowering the model’s performance measures. In a secondary analysis of the 334,564 data instances from Intermountain Healthcare between 2005 and 2018 used to form our model, we employed the extended method to automatically explain the prediction results of our model and recommend tailored interventions. The patient cohort consisted of all patients with asthma who received care at Intermountain Healthcare between 2005 and 2018, and resided in Utah or Idaho as recorded at the visit. RESULTS Our method explained the prediction results for 89.7% (391/436) of the patients with asthma who, per our model’s correct prediction, were likely to incur asthma hospital visits in the subsequent year. CONCLUSIONS This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for the prediction results of any machine learning model on imbalanced tabular data without lowering the performance measures of the model. After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could be used by clinicians to guide the allocation of limited asthma care management resources and the identification of appropriate interventions.

10.2196/21965 ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. e21965
Author(s):  
Gang Luo ◽  
Michael D Johnson ◽  
Flory L Nkoy ◽  
Shan He ◽  
Bryan L Stone

Background Asthma is a major chronic disease that poses a heavy burden on health care. To facilitate the allocation of care management resources aimed at improving outcomes for high-risk patients with asthma, we recently built a machine learning model to predict asthma hospital visits in the subsequent year in patients with asthma. Our model is more accurate than previous models. However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for use in care management, where interpretability is desired. Objective This study aims to develop a method to automatically explain the prediction results of the model and recommend tailored interventions without lowering the performance measures of the model. Methods Our data were imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To handle imbalanced data, we extended our previous method of automatically offering rule-formed explanations for the prediction results of any machine learning model on tabular data without lowering the model’s performance measures. In a secondary analysis of the 334,564 data instances from Intermountain Healthcare between 2005 and 2018 used to form our model, we employed the extended method to automatically explain the prediction results of our model and recommend tailored interventions. The patient cohort consisted of all patients with asthma who received care at Intermountain Healthcare between 2005 and 2018, and resided in Utah or Idaho as recorded at the visit. Results Our method explained the prediction results for 89.7% (391/436) of the patients with asthma who, per our model’s correct prediction, were likely to incur asthma hospital visits in the subsequent year. Conclusions This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for the prediction results of any machine learning model on imbalanced tabular data without lowering the performance measures of the model. After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could be used by clinicians to guide the allocation of limited asthma care management resources and the identification of appropriate interventions.


2020 ◽  
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

BACKGROUND Asthma causes numerous hospital encounters annually, including emergency department visits and hospitalizations. To improve patient outcomes and reduce the number of these encounters, predictive models are widely used to prospectively pinpoint high-risk patients with asthma for preventive care via care management. However, previous models do not have adequate accuracy to achieve this goal well. Adopting the modeling guideline for checking extensive candidate features, we recently constructed a machine learning model on Intermountain Healthcare data to predict asthma-related hospital encounters in patients with asthma. Although this model is more accurate than the previous models, whether our modeling guideline is generalizable to other health care systems remains unknown. OBJECTIVE This study aims to assess the generalizability of our modeling guideline to Kaiser Permanente Southern California (KPSC). METHODS The patient cohort included a random sample of 70.00% (397,858/568,369) of patients with asthma who were enrolled in a KPSC health plan for any duration between 2015 and 2018. We produced a machine learning model via a secondary analysis of 987,506 KPSC data instances from 2012 to 2017 and by checking 337 candidate features to project asthma-related hospital encounters in the following 12-month period in patients with asthma. RESULTS Our model reached an area under the receiver operating characteristic curve of 0.820. When the cutoff point for binary classification was placed at the top 10.00% (20,474/204,744) of patients with asthma having the largest predicted risk, our model achieved an accuracy of 90.08% (184,435/204,744), a sensitivity of 51.90% (2259/4353), and a specificity of 90.91% (182,176/200,391). CONCLUSIONS Our modeling guideline exhibited acceptable generalizability to KPSC and resulted in a model that is more accurate than those formerly built by others. After further enhancement, our model could be used to guide asthma care management. INTERNATIONAL REGISTERED REPORT RR2-10.2196/resprot.5039


10.2196/22689 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e22689
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

Background Asthma causes numerous hospital encounters annually, including emergency department visits and hospitalizations. To improve patient outcomes and reduce the number of these encounters, predictive models are widely used to prospectively pinpoint high-risk patients with asthma for preventive care via care management. However, previous models do not have adequate accuracy to achieve this goal well. Adopting the modeling guideline for checking extensive candidate features, we recently constructed a machine learning model on Intermountain Healthcare data to predict asthma-related hospital encounters in patients with asthma. Although this model is more accurate than the previous models, whether our modeling guideline is generalizable to other health care systems remains unknown. Objective This study aims to assess the generalizability of our modeling guideline to Kaiser Permanente Southern California (KPSC). Methods The patient cohort included a random sample of 70.00% (397,858/568,369) of patients with asthma who were enrolled in a KPSC health plan for any duration between 2015 and 2018. We produced a machine learning model via a secondary analysis of 987,506 KPSC data instances from 2012 to 2017 and by checking 337 candidate features to project asthma-related hospital encounters in the following 12-month period in patients with asthma. Results Our model reached an area under the receiver operating characteristic curve of 0.820. When the cutoff point for binary classification was placed at the top 10.00% (20,474/204,744) of patients with asthma having the largest predicted risk, our model achieved an accuracy of 90.08% (184,435/204,744), a sensitivity of 51.90% (2259/4353), and a specificity of 90.91% (182,176/200,391). Conclusions Our modeling guideline exhibited acceptable generalizability to KPSC and resulted in a model that is more accurate than those formerly built by others. After further enhancement, our model could be used to guide asthma care management. International Registered Report Identifier (IRRID) RR2-10.2196/resprot.5039


10.2196/24153 ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. e24153
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

Background Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare data and the other on Kaiser Permanente Southern California (KPSC) data, to forecast asthma-related hospital visits, including emergency department visits and hospitalizations, in the succeeding 12 months among patients with asthma. As is typical for machine learning approaches, these two models do not explain their forecasting results. To address the interpretability issue of black-box models, we designed an automatic method to offer rule format explanations for the forecasting results of any machine learning model on imbalanced tabular data and to suggest customized interventions with no accuracy loss. Our method worked well for explaining the forecasting results of our Intermountain Healthcare model, but its generalizability to other health care systems remains unknown. Objective The objective of this study is to evaluate the generalizability of our automatic explanation method to KPSC for forecasting asthma-related hospital visits. Methods Through a secondary analysis of 987,506 data instances from 2012 to 2017 at KPSC, we used our method to explain the forecasting results of our KPSC model and to suggest customized interventions. The patient cohort covered a random sample of 70% of patients with asthma who had a KPSC health plan for any period between 2015 and 2018. Results Our method explained the forecasting results for 97.57% (2204/2259) of the patients with asthma who were correctly forecasted to undergo asthma-related hospital visits in the succeeding 12 months. Conclusions For forecasting asthma-related hospital visits, our automatic explanation method exhibited an acceptable generalizability to KPSC. International Registered Report Identifier (IRRID) RR2-10.2196/resprot.5039


2020 ◽  
Author(s):  
Gang Luo ◽  
Claudia L Nau ◽  
William W Crawford ◽  
Michael Schatz ◽  
Robert S Zeiger ◽  
...  

BACKGROUND Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare data and the other on Kaiser Permanente Southern California (KPSC) data, to forecast asthma-related hospital visits, including emergency department visits and hospitalizations, in the succeeding 12 months among patients with asthma. As is typical for machine learning approaches, these two models do not explain their forecasting results. To address the interpretability issue of black-box models, we designed an automatic method to offer rule format explanations for the forecasting results of any machine learning model on imbalanced tabular data and to suggest customized interventions with no accuracy loss. Our method worked well for explaining the forecasting results of our Intermountain Healthcare model, but its generalizability to other health care systems remains unknown. OBJECTIVE The objective of this study is to evaluate the generalizability of our automatic explanation method to KPSC for forecasting asthma-related hospital visits. METHODS Through a secondary analysis of 987,506 data instances from 2012 to 2017 at KPSC, we used our method to explain the forecasting results of our KPSC model and to suggest customized interventions. The patient cohort covered a random sample of 70% of patients with asthma who had a KPSC health plan for any period between 2015 and 2018. RESULTS Our method explained the forecasting results for 97.57% (2204/2259) of the patients with asthma who were correctly forecasted to undergo asthma-related hospital visits in the succeeding 12 months. CONCLUSIONS For forecasting asthma-related hospital visits, our automatic explanation method exhibited an acceptable generalizability to KPSC. CLINICALTRIAL INTERNATIONAL REGISTERED REPORT RR2-10.2196/resprot.5039


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Dhaval Patel ◽  
Shrey Shrivastava ◽  
Wesley Gifford ◽  
Stuart Siegel ◽  
Jayant Kalagnanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document