scholarly journals Integrating Artifact Detection with Clinical Decision Support Systems (Preprint)

2020 ◽  
Author(s):  
Shermeen Nizami ◽  
Carolyn McGregor ◽  
James Robert Green

BACKGROUND Clinical decision support systems (CDSS) have the potential to lower patient mortality and morbidity rates. However, signal artifacts present in physiologic data affect the reliability and accuracy of CDSS. Moreover, patient monitors and other medical devices generate false alarms while processing artifactual data. This leads to alarm fatigue due to increased noise levels, staff disruption, and staff desensitization in busy critical care environments. Thereby, adversely affecting the quality of care at the patient bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of physiologic data and mitigating the impact of these artifacts. OBJECTIVE Recently, we developed a novel AD framework for integrating AD algorithms with CDSS. The framework was designed with features to support real-time implementation within critical care. In this research, we evaluate the framework and its features in a false alarm reduction study. We develop static framework component models followed by dynamic framework compositions to formulate four CDSS. We evaluate these formulations using neonatal patient data, and validate the six framework features of flexibility, reusability, signal quality indicator standardization, scalability, customizability, and real-time implementation support. METHODS We develop four exemplar static AD components with standardized requirements and provisions interfaces facilitating interoperability of framework components. These AD components are mixed and matched into four different AD compositions to mitigate artifacts. Each AD composition is integrated with a novel static clinical event detection (CED) component to formulate and evaluate dynamic CDSS for arterial oxygen saturation (SpO2) alarms generation. RESULTS With a sensitivity of 80%, the lowest achievable SpO2 false alarm rate is 39%. This demonstrates the utility of the framework in identifying the optimal dynamic composition to serve a given clinical need. CONCLUSIONS The framework features including reusability, signal quality indicator standardization, scalability, and customizability allow for novel CDSS formulations to be evaluated and compared. The optimal solution for a CDSS can then be hard-coded and integrated within clinical workflows for real-time implementation. Flexibility to serve different clinical needs and standardized component interoperability of the framework support the potential for real-time clinical implementation of AD.

Author(s):  
Neurilene Batista de Oliveira ◽  
Heloísa Helena Ciqueto Peres

Objective: to compare the quality of the Nursing process documentation in two versions of a clinical decision support system. Method: a quantitative and quasi-experimental study of the before-and-after type. The instrument used to measure the quality of the records was the Brazilian version of the Quality of Diagnoses, Interventions and Outcomes, which has four domains and a maximum score of 58 points. A total of 81 records were evaluated in version I (pre-intervention), as well as 58 records in version II (post-intervention), and the scores obtained in the two applications were compared. The interventions consisted of planning, pilot implementation of version II of the system, training and monitoring of users. The data were analyzed in the R software, using descriptive and inferential statistics. Results: the mean obtained at the pre-intervention moment was 38.24 and, after the intervention, 46.35 points. There was evidence of statistical difference between the means of the pre- and post-intervention groups, since the p-value was below 0.001 in the four domains evaluated. Conclusion: the quality of the documentation of the Nursing process in version II of the system was superior to version I. The efficacy of the system and the effectiveness of the interventions were verified. This study can contribute to the quality of documentation, care management, visibility of nursing actions and patient safety.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1728
Author(s):  
Goran Medic ◽  
Melodi Kosaner Kließ ◽  
Louis Atallah ◽  
Jochen Weichert ◽  
Saswat Panda ◽  
...  

Background: Clinical decision support (CDS) systems have emerged as tools providing intelligent decision making to address challenges of critical care. CDS systems can be based on existing guidelines or best practices; and can also utilize machine learning to provide a diagnosis, recommendation, or therapy course. Methods: This research aimed to identify evidence-based study designs and outcome measures to determine the clinical effectiveness of clinical decision support systems in the detection and prediction of hemodynamic instability, respiratory distress, and infection within critical care settings. PubMed, ClinicalTrials.gov and Cochrane Database of Systematic Reviews were systematically searched to identify primary research published in English between 2013 and 2018. Studies conducted in the USA, Canada, UK, Germany and France with more than 10 participants per arm were included. Results: In studies on hemodynamic instability, the prediction and management of septic shock were the most researched topics followed by the early prediction of heart failure. For respiratory distress, the most popular topics were pneumonia detection and prediction followed by pulmonary embolisms. Given the importance of imaging and clinical notes, this area combined Machine Learning with image analysis and natural language processing. In studies on infection, the most researched areas were the detection, prediction, and management of sepsis, surgical site infections, as well as acute kidney injury. Overall, a variety of Machine Learning algorithms were utilized frequently, particularly support vector machines, boosting techniques, random forest classifiers and neural networks. Sensitivity, specificity, and ROC AUC were the most frequently reported performance measures. Conclusion: This review showed an increasing use of Machine Learning for CDS in all three areas. Large datasets are required for training these algorithms; making it imperative to appropriately address, challenges such as class imbalance, correct labelling of data and missing data. Recommendations are formulated for the development and successful adoption of CDS systems.


2020 ◽  
Vol 27 (12) ◽  
pp. 1968-1976
Author(s):  
Anna Ostropolets ◽  
Linying Zhang ◽  
George Hripcsak

Abstract Objective A growing body of observational data enabled its secondary use to facilitate clinical care for complex cases not covered by the existing evidence. We conducted a scoping review to characterize clinical decision support systems (CDSSs) that generate new knowledge to provide guidance for such cases in real time. Materials and Methods PubMed, Embase, ProQuest, and IEEE Xplore were searched up to May 2020. The abstracts were screened by 2 reviewers. Full texts of the relevant articles were reviewed by the first author and approved by the second reviewer, accompanied by the screening of articles’ references. The details of design, implementation and evaluation of included CDSSs were extracted. Results Our search returned 3427 articles, 53 of which describing 25 CDSSs were selected. We identified 8 expert-based and 17 data-driven tools. Sixteen (64%) tools were developed in the United States, with the others mostly in Europe. Most of the tools (n = 16, 64%) were implemented in 1 site, with only 5 being actively used in clinical practice. Patient or quality outcomes were assessed for 3 (18%) CDSSs, 4 (16%) underwent user acceptance or usage testing and 7 (28%) functional testing. Conclusions We found a number of CDSSs that generate new knowledge, although only 1 addressed confounding and bias. Overall, the tools lacked demonstration of their utility. Improvement in clinical and quality outcomes were shown only for a few CDSSs, while the benefits of the others remain unclear. This review suggests a need for a further testing of such CDSSs and, if appropriate, their dissemination.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 185676-185687
Author(s):  
Noha Ossama El-Ganainy ◽  
Ilangko Balasingham ◽  
Per Steinar Halvorsen ◽  
Leiv Arne Rosseland

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1728
Author(s):  
Goran Medic ◽  
Melodi Kosaner Kließ ◽  
Louis Atallah ◽  
Jochen Weichert ◽  
Saswat Panda ◽  
...  

Background: Clinical decision support (CDS) systems have emerged as tools providing intelligent decision making to address challenges of critical care. CDS systems can be based on existing guidelines or best practices; and can also utilize machine learning to provide a diagnosis, recommendation, or therapy course. Methods: This research aimed to identify evidence-based study designs and outcome measures to determine the clinical effectiveness of clinical decision support systems in the detection and prediction of hemodynamic instability, respiratory distress, and infection within critical care settings. PubMed, ClinicalTrials.gov and Cochrane Database of Systematic Reviews were systematically searched to identify primary research published in English between 2013 and 2018. Studies conducted in the USA, Canada, UK, Germany and France with more than 10 participants per arm were included. Results: In studies on hemodynamic instability, the prediction and management of septic shock were the most researched topics followed by the early prediction of heart failure. For respiratory distress, the most popular topics were pneumonia detection and prediction followed by pulmonary embolisms. Given the importance of imaging and clinical notes, this area combined Machine Learning with image analysis and natural language processing. In studies on infection, the most researched areas were the detection, prediction, and management of sepsis, surgical site infections, as well as acute kidney injury. Overall, a variety of Machine Learning algorithms were utilized frequently, particularly support vector machines, boosting techniques, random forest classifiers and neural networks. Sensitivity, specificity, and ROC AUC were the most frequently reported performance measures. Conclusion: This review showed an increasing use of Machine Learning for CDS in all three areas. Large datasets are required for training these algorithms; making it imperative to appropriately address, challenges such as class imbalance, correct labelling of data and missing data. Recommendations are formulated for the development and successful adoption of CDS systems.


Sign in / Sign up

Export Citation Format

Share Document