A Guide to Convolutional Neural Networks for Computer Vision

2018 ◽  
Vol 8 (1) ◽  
pp. 1-207 ◽  
Author(s):  
Salman Khan ◽  
Hossein Rahmani ◽  
Syed Afaq Ali Shah ◽  
Mohammed Bennamoun
2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Author(s):  
Ritwik Chavhan ◽  
Kadir Sheikh ◽  
Rishikesh Bondade ◽  
Swaraj Dhanulkar ◽  
Aniket Ninave ◽  
...  

Plant disease is an ongoing challenge for smallholder farmers, which threatens income and food security. The recent revolution in smartphone penetration and computer vision models has created an opportunity for image classification in agriculture. The project focuses on providing the data relating to the pesticide/insecticide and therefore the quantity of pesticide/insecticide to be used for associate degree unhealthy crop. The user, is that the farmer clicks an image of the crop and uploads it to the server via the humanoid application. When uploading the image the farmer gets associate degree distinctive ID displayed on his application screen. The farmer must create note of that ID since that ID must be utilized by the farmer later to retrieve the message when a minute. The uploaded image is then processed by Convolutional Neural Networks. Convolutional Neural Networks (CNNs) are considered state-of-the-art in image recognition and offer the ability to provide a prompt and definite diagnosis. Then the result consisting of the malady name and therefore the affected space is retrieved. This result's then uploaded into the message table within the server. Currently the Farmer are going to be ready to retrieve the whole info during a respectable format by coming into the distinctive ID he had received within the Application.


2021 ◽  
Vol 14 (38) ◽  
pp. 2899-2915
Author(s):  
Premanand Ghadekar ◽  
◽  
Gurdeep Singh ◽  
Joydeep Datta ◽  
Aryan Kumar Gupta ◽  
...  

2021 ◽  
Author(s):  
Weihao Zhuang ◽  
Tristan Hascoet ◽  
Xunquan Chen ◽  
Ryoichi Takashima ◽  
Tetsuya Takiguchi ◽  
...  

Abstract Currently, deep learning plays an indispensable role in many fields, including computer vision, natural language processing, and speech recognition. Convolutional Neural Networks (CNNs) have demonstrated excellent performance in computer vision tasks thanks to their powerful feature extraction capability. However, as the larger models have shown higher accuracy, recent developments have led to state-of-the-art CNN models with increasing resource consumption. This paper investigates a conceptual approach to reduce the memory consumption of CNN inference. Our method consists of processing the input image in a sequence of carefully designed tiles within the lower subnetwork of the CNN, so as to minimize its peak memory consumption, while keeping the end-to-end computation unchanged. This method introduces a trade-off between memory consumption and computations, which is particularly suitable for high-resolution inputs. Our experimental results show that MobileNetV2 memory consumption can be reduced by up to 5.3 times with our proposed method. For ResNet50, one of the most commonly used CNN models in computer vision tasks, memory can be optimized by up to 2.3 times.


2020 ◽  
Vol 27 (4) ◽  
pp. 20-33
Author(s):  
Paulo César Pereira Júnior ◽  
Alexandre Monteiro ◽  
Rafael Da Luz Ribeiro ◽  
Antonio Carlos Sobieranski ◽  
Aldo Von Wangenheim

In this paper, we present a comparison between convolutional neural networks and classicalcomputer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth, for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models


Computer vision is a scientific field that deals with how computers can acquire significant level comprehension from computerized images or videos. One of the keystones of computer vision is object detection that aims to identify relevant features from video or image to detect objects. Backbone is the first stage in object detection algorithms that play a crucial role in object detection. Object detectors are usually provided with backbone networks designed for image classification. Object detection performance is highly based on features extracted by backbones, for instance, by simply replacing a backbone with its extended version, a large accuracy metric grows up. Additionally, the backbone's importance is demonstrated by its efficiency in real-time object detection. In this paper, we aim to accumulate the crucial role of the deep learning era and convolutional neural networks in particular in object detection tasks. We have analyzed and have been concentrating on a wide range of reviews on convolutional neural networks used as the backbone of object detection models. Building, therefore, a review of backbones that help researchers and scientists to use it as a guideline for their works.


2019 ◽  
Vol 3 (2) ◽  
pp. 31-40 ◽  
Author(s):  
Ahmed Shamsaldin ◽  
Polla Fattah ◽  
Tarik Rashid ◽  
Nawzad Al-Salihi

At present, deep learning is widely used in a broad range of arenas. A convolutional neural networks (CNN) is becoming the star of deep learning as it gives the best and most precise results when cracking real-world problems. In this work, a brief description of the applications of CNNs in two areas will be presented: First, in computer vision, generally, that is, scene labeling, face recognition, action recognition, and image classification; Second, in natural language processing, that is, the fields of speech recognition and text classification.


2021 ◽  
Author(s):  
Ghassan Dabane ◽  
Laurent Perrinet ◽  
Emmanuel Daucé

Convolutional Neural Networks have been considered the go-to option for object recognition in computer vision for the last couple of years. However, their invariance to object’s translations is still deemed as a weak point and remains limited to small translations only via their max-pooling layers. One bio-inspired approach considers the What/Where pathway separation in Mammals to overcome this limitation. This approach works as a nature-inspired attention mechanism, another classical approach of which is Spatial Transformers. These allow an adaptive endto-end learning of different classes of spatial transformations throughout training. In this work, we overview Spatial Transformers as an attention-only mechanism and compare them with the What/Where model. We show that the use of attention restricted or “Foveated” Spatial Transformer Networks, coupled alongside a curriculum learning training scheme and an efficient log-polar visual space entry, provides better performance when compared to the What/Where model, all this without the need for any extra supervision whatsoever.


2020 ◽  
Vol 2 (2) ◽  
pp. 23
Author(s):  
Lei Wang

<p>As an important research achievement in the field of brain like computing, deep convolution neural network has been widely used in many fields such as computer vision, natural language processing, information retrieval, speech recognition, semantic understanding and so on. It has set off a wave of neural network research in industry and academia and promoted the development of artificial intelligence. At present, the deep convolution neural network mainly simulates the complex hierarchical cognitive laws of the human brain by increasing the number of layers of the network, using a larger training data set, and improving the network structure or training learning algorithm of the existing neural network, so as to narrow the gap with the visual system of the human brain and enable the machine to acquire the capability of "abstract concepts". Deep convolution neural network has achieved great success in many computer vision tasks such as image classification, target detection, face recognition, pedestrian recognition, etc. Firstly, this paper reviews the development history of convolutional neural networks. Then, the working principle of the deep convolution neural network is analyzed in detail. Then, this paper mainly introduces the representative achievements of convolution neural network from the following two aspects, and shows the improvement effect of various technical methods on image classification accuracy through examples. From the aspect of adding network layers, the structures of classical convolutional neural networks such as AlexNet, ZF-Net, VGG, GoogLeNet and ResNet are discussed and analyzed. From the aspect of increasing the size of data set, the difficulties of manually adding labeled samples and the effect of using data amplification technology on improving the performance of neural network are introduced. This paper focuses on the latest research progress of convolution neural network in image classification and face recognition. Finally, the problems and challenges to be solved in future brain-like intelligence research based on deep convolution neural network are proposed.</p>


Sign in / Sign up

Export Citation Format

Share Document