Simulation of Supercritical Water Oxidation with Air at Pilot Plant Scale

Author(s):  
Belén García Jarana ◽  
Jezabel Sánchez Oneto ◽  
Juan Ramón Portela Miguélez ◽  
Enrique Nebot Sanz ◽  
Enrique J. Martínez de la Ossa

Supercritical Water Oxidation (SCWO) processes have been studied by numerous researchers. The effectiveness of this approach to treat a wide variety of wastes has been proved and the kinetics involved in some cases have been described. Phenol is commonly present in industrial wastewaters and it is extremely toxic. Hence, phenol is a model pollutant that has been the subject of numerous studies by SCWO on a laboratory scale. In this work, a pilot-scale SCWO system has been used to compare experimental and predicted conversions in the SCWO of phenol, using the reaction kinetic equations obtained at the laboratory scale. In this context, “PROSIM PLUS” software was employed to develop a simulator for the pilot plant facility, with the reaction kinetic parameters adjusted to represent the experimental data. In this study it was necessary to determine the thermal losses between the experimental reactor and its surroundings. These thermal losses were obtained from tests with pure water and oxidant streams in the absence of chemical reaction. An equation that predicted the effect of flow rate and temperature on the thermal losses was used. Experimental oxidation tests were conducted with initial temperature in the range 380 to 425 ºC, at 250 bar and phenol concentrations ranging from 1 to 12 g/l. Good agreement in the simulation was obtained by adjusting the kinetic parameters within their confidence range. This simulator was used to optimize the SCWO of phenol solutions in the pilot plant facility.

1991 ◽  
Vol 23 (1-3) ◽  
pp. 389-398 ◽  
Author(s):  
Abdullah Shanableh ◽  
Earnest F. Gloyna

Environmental contaminants can be eliminated through the use of SCWO techniques. A comprehensive supercritical oxidation (SCWO) research laboratory, including bench and pilot-scale facilities has been developed. High temperature and pressure systems slightly less than and greater than supercritical water conditions can be used for the efficient destruction of waste biological treatment plant sludges, acetic acid, 2-nitro phenol, 2,4-dimethyl phenol, phenol, and 2,4-dinitro toluene. Above 400 °C, near complete destruction of sludge and transformation compounds such as acetic acid can be achieved with relatively short residence times. Ammonia and acetic acid are transformation products in the SCWO of biological treatment plant sludges. Acetic acid produced from the oxidation of sludge is oxidized rapidly at supercritical temperatures, 400 °C to 450 °C.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 363-368 ◽  
Author(s):  
N. Crain ◽  
A. Shanableh ◽  
E. Gloyna

Supercritical water oxidation (SCWO) is a proven technology for the treatment of contaminated organic wastes. Bench and pilot-scale work completed at The University of Texas at Austin's SCWO Laboratory have proven the technology effective for treating a variety of sludge types, including sludge contaminated with hazardous compounds. The studies included pulp and paper mill sludges and sludges derived from the treatment of municipal and industrial wastewaters. The results presented in this paper confirmed that the removal of the organic component of sludge, including the trace toxic organic compounds, using SCWO exceeded 99.9%. For example, the results show that the destruction removal efficiencies (DRE's) of the PCBs reached 99.99% in the contaminated sludge. No dioxins or furans were detected in the gaseous effluent resulting from the treatment of the PCB-contaminated sludge. These results demonstrate the technical effectiveness of SCWO as a sludge remediation technology.


2003 ◽  
Vol 48 (1) ◽  
pp. 185-190 ◽  
Author(s):  
K. Stendahl ◽  
S. Jäfverström

Supercritical Water Oxidation (SCWO) is an innovative and effective destruction method for organics in sewage sludge. The SCWO process leaves a slurry of inorganic ash in a pure water phase free from organic contaminants, which opens possibilities for a simple process to recover components like phosphates from the sewage sludge. In a continuous pilot plant for the SCWO process digested sludge has been treated. The ash has been extracted in lab scale with both caustic and acids in order to recover phosphates. By leaching the ash with caustic, 90% of the phosphorus could be separated as a sodium phosphate solution. By treating the sodium phosphate solution with lime, calcium phosphate was precipitated and caustic recovered and circulated back to the leaching process.


2002 ◽  
Vol 41 (3) ◽  
pp. 624-631 ◽  
Author(s):  
Brian D. Phenix ◽  
Joanna L. DiNaro ◽  
Jefferson W. Tester ◽  
Jack B. Howard ◽  
Kenneth A. Smith

2012 ◽  
Vol 90 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Donghai Xu ◽  
Shuzhong Wang ◽  
Xingying Tang ◽  
Yanmeng Gong ◽  
Yang Guo ◽  
...  

2011 ◽  
Vol 50 (2) ◽  
pp. 775-784 ◽  
Author(s):  
Francisco Jimenez-Espadafor ◽  
Juan R. Portela ◽  
Violeta Vadillo ◽  
Jezabel Sánchez-Oneto ◽  
José A. Becerra Villanueva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document