scholarly journals Effects of stress ratio and stress intensity factor range on fatigue crack closure in steel plate.

1987 ◽  
Vol 5 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Yoichi Tanaka ◽  
Isao Soya
Author(s):  
Yoshihito Yamaguchi ◽  
Kunio Hasegawa ◽  
Yinsheng Li

Crack closure during fatigue crack growth is an important phenomenon for predicting fatigue crack growth amount. Many experimental data show that fatigue cracks close at not only negative loads but also positive loads during constant amplitude loading cycles, depending on applied stress levels. The Appendix A-4300 in the ASME Code Section XI provides two equations of fatigue crack growth rates expressed by stress intensity factor range for ferritic steels under negative stress ratio. The boundary of two fatigue crack growth rates is classified by the magnitude of applied stress intensity factor range with the consideration of crack closure. The objective of this paper is to investigate the influence of the magnitude of the stress intensity factor range on crack closure. Fatigue tests have been performed on ferritic steel specimens in air environment at room and high temperatures. Crack closures were obtained as a parameter of stress ratio. It was found that crack closure occurs at a smaller applied stress intensity factor range than the definition given by the Appendix A-4300.


2005 ◽  
Vol 297-300 ◽  
pp. 1120-1125 ◽  
Author(s):  
Myung Hwan Boo ◽  
Chi Yong Park

In order to study the influence of stress ratio and WC grain size, the characteristics of fatigue crack growth were investigated in WC-Co cemented carbides with two different grain sizes of 3 and 6 µm. Fatigue crack growth tests were carried out over a wide range of fatigue crack growth rates covering the threshold stress intensity factor range DKth. It was found that crack growth rate da/dN against stress intensity factor range DK depended on stress ratio R. The crack growth rate plotted in terms of effective stress intensity factor range DKeff still exhibited the effect of microstructure. Fractographic examination revealed brittle fracture at R=0.1 and ductile fracture at R=0.5 in Co binder phase. The amount of Co phase transformation for stress ratio was closely related to fatigue crack growth characteristics.


2012 ◽  
Vol 510-511 ◽  
pp. 15-21 ◽  
Author(s):  
A.J. McEvily

Many of the recent advances in the understanding of the fatigue crack growth process have resulted from an improved realization of the importance of fatigue crack closure in the crack growth process. Two basic crack closure processes have been identified. One of which is known as plasticity-induced fatigue crack closure (PIFCC), and the other is roughness-induced fatigue crack closure (RIFCC). Both forms occur in all alloys, but PIFCC is a surface-related process which is dominant in aluminum alloys such as 2024-T3, whereas RIFCC is dominant in most steels and titanium alloys. A proposed basic equation governing fatigue crack growth is (1) where where Kmax is the maximum stress intensity factor in a loading cycle and Kop is the stress intensity factor at the crack opening level. is the range of the stress intensity factor at the threshold level which is taken to correspond to a crack growth rate of 10-11 m/cycle. The material constant A has units of (MPa)-2, and therefore Eq. 1 is dimensionally correct. Eq.1 has been successfully used in the analysis of both long and short cracks, but in the latter case modification is needed to account for elastic-plastic behavior, the development of crack closure, and the Kitagawa effect which shows that the fatigue strength rather than the threshold level is the controlling factor determining the rate of fatigue crack growth in the very short fatigue crack growth range. Eq. 1 is used to show that The non-propagating cracks observed by Frost and Dugdale resulted from crack closure. The behavior of cracks as short as 10 microns in length can be predicted. Fatigue notch sensitivity is related to crack closure. Very high cycle fatigue (VHCF) behavior is also associated with fatigue crack closure.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
José A. F. O. Correia ◽  
Abílio M. P. De Jesus ◽  
Pedro M. G. P. Moreira ◽  
Paulo J. S. Tavares

Structural design taking into account fatigue damage requires a thorough knowledge of the behaviour of materials. In addition to the monotonic behaviour of the materials, it is also important to assess their cyclic response and fatigue crack propagation behaviour under constant and variable amplitude loading. Materials whenever subjected to fatigue cracking may exhibit mean stress effects as well as crack closure effects. In this paper, a theoretical model based on the same initial assumptions of the analytical models proposed by Hudak and Davidson and Ellyin is proposed to estimate the influence of the crack closure effects. This proposal based further on Walker’s propagation law was applied to the P355NL1 steel using an inverse analysis (back-extrapolation) of experimental fatigue crack propagation results. Based on this proposed model it is possible to estimate the crack opening stress intensity factor,Kop, the relationship betweenU=ΔKeff/ΔKquantity and the stress intensity factor, the crack length, and the stress ratio. This allows the evaluation of the influence of the crack closure effects for different stress ratio levels, in the fatigue crack propagation rates. Finally, a good agreement is found between the proposed theoretical model and the analytical models presented in the literature.


2003 ◽  
Vol 125 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Muhammad Irfan-ul-Haq ◽  
Nesar Merah

This study addresses the effect of temperature on fatigue crack growth (FCG) behavior of CPVC. FCG tests were conducted on CPVC SEN tensile specimens in the temperature range −10 to 70°C. These specimens were prepared from 4-in. injection-molded pipe fittings. Crack growth behavior was studied using LEFM concepts. The stress intensity factor was modified to include the crack closure and plastic zone effects. The effective stress intensity factor range ΔKeff gave satisfactory correlation of crack growth rate (da/dN) at all temperatures of interest. The crack growth resistance was found to decrease with temperature increase. The effect of temperature on da/dN was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing ΔKeff by fracture strain and yield stress. All the da/dN-ΔK curves at different temperatures were collapsed on a single curve. Crazing was found to be the dominant fatigue mechanism, especially at high temperature, while shear yielding was the dominant mechanism at low temperatures.


2009 ◽  
Vol 417-418 ◽  
pp. 653-656
Author(s):  
Ya Zhi Li ◽  
Jing He ◽  
Zi Peng Zhang

The behavior of plasticity induced fatigue crack closure (PICC) in middle tension specimen was analyzed by the elastic-plastic finite element method. For the constant-K (CK) loading cases, the opening stress intensity factor are independent of crack length. The level of increases with the maximal applied stress intensity factor for given load ratio and increases with for fixed . The in plane strain state is much smaller than that in plane stress state. The results under CK loadings can be deduced to constant amplitude cyclic loading case during which the load ratio, maximal load level, crack length and specimen thickness are all the factors affecting the crack closure effect. The phenomena revealed in the analysis are beneficial in understanding the driving force mechanism of the fatigue crack growth.


2015 ◽  
Vol 770 ◽  
pp. 209-215
Author(s):  
Pavlo Maruschak ◽  
Andriy Sorochak ◽  
Sergey V. Panin

The paper presents the basic regularities of fatigue failure of the railway wheelset axle material – OsL steel (C - 0,40—0,48 %; Mn - 0,55—0,85 %; Si - 0,15—0,35 %; P < 0,04%; S < 0,045 %; Cr < 0,3 %; Ni < 0,3 %; Cu < 0,25 %). It was revealed that under loading stress ratio R = 0, fatigue crack growth is 2 ... 4 times lower than that at the asymmetry R = -1. In doing so, amplitude of stress intensity factor vary in the range of 20 – 35 MPa√m. The micromechanisms of fatigue crack growth are described and systematized, while physical-mechanical interpretations of the relief morphology at different stages of its growth are offered.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Kenichi Masuda ◽  
Sotomi Ishihara ◽  
Noriyasu Oguma

Fatigue crack growth experiments are performed using A7075-T6 compact tension (CT) specimens with various thicknesses t (1–21 mm). The stress intensity factor at the crack opening level Kop is measured, and the effects of t and the stress intensity factor range ΔK on Kop are investigated. In addition, the change in Kop value due to specimen surface removal is investigated. Furthermore, we clarify that the radius of curvature of the leading edge of the fatigue crack decreases as t becomes thinner. Using the three-dimensional elastoplastic finite element method, the amount of plastic lateral contraction (depression depth d) at the crack tip after fatigue loading is calculated quantitatively. The following main experimental results are obtained: In the region where ΔK is 5 MPam1/2 or higher, the rate of fatigue crack growth da/dN at a constant ΔK value increases as t increases from 1 to 11 mm. The da/dN between t = 11 and 21 mm is the same. Meanwhile, in the region where ΔK is less than 5 MPam1/2, the effect of t on da/dN is not observed. The effects of t and ΔK on the da/dN–ΔK relationship are considered physically and quantitatively based on d.


Sign in / Sign up

Export Citation Format

Share Document