scholarly journals Estimation Procedure of Nonlinear Maximum Displacement Response of Steel Bridge Pier in Seismic Design.

1997 ◽  
pp. 297-304
Author(s):  
Akinori Nakajima ◽  
Daisuke Miyama ◽  
Hisanori Otsuka ◽  
Takashi Sato ◽  
Motoyuki Suzuki
2018 ◽  
Vol 763 ◽  
pp. 295-300 ◽  
Author(s):  
Khaled Saif ◽  
Chin Long Lee ◽  
Trevor Yeow ◽  
Gregory A. MacRae

Nonlinear time history analyses of SDOF bridge columns with elasto-plastic flexural behaviour which are subject to eccentric gravity loading are conducted to quantify the effect of ratchetting. Peak and residual displacements were used as indicators of the degree of ratchetting. The effects of member axial loads and design force reduction factors were also investigated. It was shown that displacement demands increased with increasing eccentric moment. For eccentric moment of 30% of the yield moment, the average maximum and residual displacements increase by 4.2 and 3.8 times the maximum displacement, respectively, which the engineers calculate using static methods without considering ratchetting effect. Design curves for estimating the displacement demands for different eccentric moments are also developed. The current NZ1170.5 (2016) provisions were found to be inadequate in estimating the maximum displacement for steel structures, and hence, new provisions for steel structures should be presented.


2009 ◽  
Vol 9 (1) ◽  
pp. 77-83
Author(s):  
Mikihito Hirohata ◽  
Takuya Morimoto ◽  
You-Chul Kim

2019 ◽  
Vol 22 (16) ◽  
pp. 3420-3434 ◽  
Author(s):  
Gang Li ◽  
Li-Hua Zhu ◽  
Hong-Nan Li

Passive energy dissipation devices have been proved to be effective and low-cost means of structural control, and a variety of dampers have been developed over the past decades. Hysteretic dampers with hardening post-yielding stiffness have multiphased energy dissipation characteristics because of their hardening behavior, which can compensate for stiffness loss and postpone the collapse of damaged structures. In this article, a hysteretic model is proposed for hysteretic dampers with hardening post-yielding stiffnesses, and a formula is derived for equivalent yield strength expressed by the additional damping of the structure. A procedure is developed for displacement-based seismic design that transforms the relatively complex damping into an acceptable yield strength. A numerical example is only presented for demonstrating the design process and simply validating the proposed method. The results show that the proposed procedure is easy to implement and could produce adequate hysteretic dampers with hardening post-yielding stiffness hardening behavior. The maximum displacement responses of the existing structure retrofitted using the proposed procedure satisfy the expected performance objective well. Thus, this procedure could be an alternative to seismic retrofitting for structures with energy dissipation systems.


1997 ◽  
pp. 105-123 ◽  
Author(s):  
Yoshiaki Goto ◽  
Satoshi Miyashita ◽  
Hideyuki Fujiwara ◽  
Takashi Kamijo

2015 ◽  
Vol 777 ◽  
pp. 23-26
Author(s):  
Xing Zi Jiao ◽  
Yong Bo Shao

This study presents finite element analyses for a special steel bridge under the action an actual seismic wave. The maximum stress and the maximum deflection of the bridge are calculated based on the dynamic analyses. It is found that the bracing system and the beams between the two columns at the end of the bracing system are the critical members in the steel bridge under seismic action. The maximum displacement of the steel bridge is located at the overhang beams at the bridge end. However, the dynamic response is different when the seismic wave is input in different directions. Based on the numerical results, it is found that the special steel bridge is safe under the seismic action.


2010 ◽  
Vol 163-167 ◽  
pp. 4363-4366 ◽  
Author(s):  
Cheng Zhong Yang

To reveal the stress-strain properties of Gangou high rockfill embankment with 71m high under seismic loads and provide the reference for its security evaluation and the seismic reinforcement design. By simplifying the high rockfill embankment as the plane problem, establishing two-dimensional finite element model, inputting EL Centro and applying seismic response spectrum method, the dynamic response of high rockfill embankment under seismic loads were simulated. The results show that: With the increase of embankment height, the dynamic response presents increasing tendency; The maximum displacement occurs on the right side of the embankment top, t1474he maximum acceleration appears at the middle of embankment slope. From the view of seismic design, the right side of the embankment top and the middle of embankment slope are the focus of seismic design.


2011 ◽  
Vol 105-107 ◽  
pp. 491-494
Author(s):  
Tie Jun Liu ◽  
Yong Zhang ◽  
Gang Li ◽  
Feng Hui Wang

In design of solar powered aircraft wing panel, vibration properties of wing panel should be considered, especially for the peak value of dynamic response. In this research, a viscoelastic damping layer is built for vibration isolation, wing panel finite element models of stiffened and no-stiffened structures base on fiber-reinforced laminates with damping layer in the middle are built. Natural frequency and displacement response are analyzed with different thickness of damping layer and structures. Result shows natural frequencies decrease as thickness increased, and that of laminates are lower than stiffened structure. The maximum displacement response value decreased when thickness increased and that of laminates is higher than structured with stiffer. The presented work is helpful for type selection and designing of solar powered aircraft wing panel.


Sign in / Sign up

Export Citation Format

Share Document