scholarly journals Evaluation of Seismic Damage States and Seismic Retrofitting Effects for Bridge Structure System Based on Damage Indices.

1999 ◽  
pp. 325-336
Author(s):  
Akihiko KANEYOSHI ◽  
Ayaho MIYAMOTO ◽  
Takehito KOGE
1999 ◽  
pp. 31-42
Author(s):  
Akihiko KANEYOSHI ◽  
Ayaho MIYAMOTO ◽  
Takehito KOGE ◽  
Tsunoru NAKASHIMA

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Vui Van Cao ◽  
Son Quang Pham

Applying similar amount of fibre reinforced polymer (FRP) for all plastic hinge locations in a structure is not an ideal approach as damage occurring at these critical locations may vary considerably. Building owners also always want to keep FRP retrofitting cost and associated interruption to a minimum. In this context, the current paper proposes an FRP retrofitting approach, in which FRP is selectively distributed based on the distribution of seismic damage in structures. The proposed approach, characterized by both quantitative and qualitative criteria, is simple but very effective in simultaneously reducing the seismic damage, amount of FRP to be used, and time of installation. For the considered cases of low- and mid-rise nonductile building structures, the FRP amount reduced approximately by 31% compared to the cases in which FRP was evenly distributed, leading to lower installation cost and less interruption time. Interestingly, although 31% FRP was saved, the damage indices of the FRP retrofitted frames were significantly lower than those in cases of even FRP distribution because FRP effectively served for critical locations. Due to its simplicity and technical/economical effectiveness, the proposed FRP retrofitting approach can be useful for engineering practice.


2014 ◽  
Vol 488-489 ◽  
pp. 398-402 ◽  
Author(s):  
Hai Qing Li ◽  
Yong Jun Ni ◽  
Xin Gang Liu ◽  
Jin Xing Yan

Seismic damage was the key reason which resulted in the serviceability degradation or collapse of the bridge. How to quantify the seismic damage and evaluate the seismic performance of the bridge under earthquakes through the damage analysis was the significant research direction in the performance based seismic design. In this paper the Park-Ang model (a well-known dual parameters model) and its modification version used for the damage evaluation of the concrete structure were compared. Furthermore, through the definition of the damage indices of the models based on the modified Park-Ang model and the descending slope of the IDA(incremental dynamic analysis) curve, the seismic damage levels of the typical bridge in the urban rail transit line under the designated earthquakes were analyzed, respectively. It was shown from the results that the calculated results from the two model was essentially consistent. The damage analysis based evaluation method was feasibly used for the seismic performance evaluation of the bridge.


Author(s):  
Marina Yusoff ◽  
Faris Mohd Najib ◽  
Rozaina Ismail

The evaluation of the vulnerability of buildings to earthquakes is of prime importance to ensure a good plan can be generated for the disaster preparedness to civilians. Most of the attempts are directed in calculating the damage index of buildings to determine and predict the vulnerability to certain scales of earthquakes. Most of the solutions used are traditional methods which are time consuming and complex. Some of initiatives have proven that the artificial neural network methods have the potential in solving earthquakes prediction problems. However, these methods have limitations in terms of suffering from local optima, premature convergence and overfitting. To overcome this challenging issue, this paper introduces a new solution to the prediction on the seismic damage index of buildings with the application of hybrid back propagation neural network and particle swarm optimization (BPNN-PSO) method. The prediction was based on damage indices of 35 buildings around Malaysia. The BPNN-PSO demonstrated a better result of 89% accuracy compared to the traditional backpropagation neural network with only 84%. The capability of PSO supports fast convergence method has shown good effort to improve the processing time and accuracy of the results.


2012 ◽  
Vol 204-208 ◽  
pp. 2555-2558 ◽  
Author(s):  
Duo Zhi Wang ◽  
Jun Wu Dai ◽  
Chen Xiao Zhang

Multi-story Masonry Building with R. C. Frames on Ground Floor (Framed-Ground Floor Structure for short) which has serious seismic damage and high collapsed rate, is the unreasonable structure system. However, the structure system not be abolished for economic reason. Collapse types of that are divided into collapse of ground floor, collapse of transition layer, global collapse. And seismic damage is also serious for frame column and shear wall. Experiences are obtained from above seismic damage, and the following aspects should be taken into account in the future. 1. The shear wall can be increased to improve stiffness of weak layer. And designer should try to arrange the walls equably. 2. In order to avoid stiffness mutation, stiffness ratio between ground frame and transition layer can be adjusted. 3. Collapse resistant design of Framed-Ground Floor Structures should be emphasized.


1995 ◽  
Vol 11 (2) ◽  
pp. 319-349 ◽  
Author(s):  
Martin S. Williams ◽  
Robert G. Sexsmith

This paper gives a review of seismic damage indices, with particular reference to their use in retrofit decision making. Damage indices aim to provide a means of quantifying numerically the damage in concrete structures sustained under earthquake loading. Indices may be defined locally, for an individual element, or globally, for a whole structure. Most local indices are cumulative in nature, reflecting the dependence of damage on both the amplitude and the number of cycles of loading. The main disadvantages of most local damage indices are the need for tuning of coefficients for a particular structural type and the lack of calibration against varying degrees of damage. Global damage indices may be calculated by taking a weighted average of the local indices throughout a structure, or by comparing the modal properties of the structure before and after (and sometimes during) the earthquake. The weighted-average indices are prone to much the same problems as the local indices. The modal indices vary widely in their level of sophistication, those capable of detecting relatively minor damage requiring the accurate determination of a large number of modes of vibration. The development and application of damage indices has until now concentrated almost exclusively on flexural modes of failure; there is a clear need to investigate the ability of the indices to represent shear damage.


2016 ◽  
Vol 10 (1) ◽  
pp. 192-209 ◽  
Author(s):  
A.J. Kappos ◽  
V.K. Papanikolaou

A large part of the building stock in seismic-prone areas worldwide are masonry structures that have been designed without seismic design considerations. Proper seismic assessment of such structures is quite a challenge, particularly so if their response well into the inelastic range, up to local or global failure, has to be predicted, as typically required in fragility analysis. A critical issue in this respect is the absence of rigid diaphragm action (due to the presence of relatively flexible floors), which renders particularly cumbersome the application of popular and convenient nonlinear analysis methods like the static pushover analysis. These issues are addressed in this paper that focusses on a masonry building representative of Southern European practice, which is analysed in both its pristine condition and after applying retrofitting schemes typical of those implemented in pre-earthquake strengthening programmes. Nonlinear behaviour is evaluated using dynamic response-history analysis, which is found to be more effective and even easier to apply in this type of building wherein critical modes are of a local nature, due to the absence of diaphragm action. Fragility curves are then derived for both the initial and the strengthened building, exploring alternative definitions of seismic damage states, including some proposals originating from recent international research programmes.


2001 ◽  
Vol 50 (1) ◽  
pp. 32-39
Author(s):  
Akihiko KANEYOSHI ◽  
Ayaho MIYAMOTO ◽  
Hideaki NAKAMURA ◽  
Eiji NAKAYAMA

Sign in / Sign up

Export Citation Format

Share Document