scholarly journals Matrix Analysis of Plane Frame Structures

1957 ◽  
Vol 1957 (47) ◽  
pp. 7-17
Author(s):  
Yozo Ochi
1975 ◽  
Vol 97 (4) ◽  
pp. 1238-1244
Author(s):  
Rong Chung Shieh

Within the framework of lumped mass/elementary beam theory, a large displacement matrix analysis of elastic/perfectly viscoplastic plane frame structures undergoing primarily flexural deformations and following a constitutive power law is first formulated. A general purpose computer program based on the step-by-step computational procedure in conjunction with the fourth order Runge-Kutta integration technique is then developed. The computerized study is then used in an analytical/experimental correlation study of the dynamic response of a laboratory impact test problem of a mild steel plane frame dropped into a narrow rigid pole obstacle at 20 mph (32.2 km/hr); good analytical and experimental correlation results are obtained up to 2 percent of strain. An example problem of inelastic response of an automobile bumper (beam) subjected to impact loading is also given. Discussion of the results with regard to strain rate sensitivity effects on dynamic plastic behavior and comparison of the “exact” solution with those obtained under certain simplified approximations are made.


2019 ◽  
Vol 35 (3) ◽  
pp. 1213-1233 ◽  
Author(s):  
N. Merve Çağlar ◽  
Erdal Şafak

The paper presents a methodology to analyze plane frame structures using the Spectral Element Method (SEM) with and without considering Soil-Structure Interaction (SSI). The formulation of spectral element matrices based on higher-order element theories and the assemblage procedure of arbitrarily oriented members are outlined. It is shown that SEM gives more accurate results with much smaller computational cost, especially at high frequencies. Since the formulation is in the frequency domain, the frequency-dependent foundation impedance functions and SSI effects can easily be incorporated in the analysis. As an example, the dynamic response of a plane frame structure is calculated based on the Finite Element Method (FEM) and SEM. FEM and SEM results are compared at different frequency bands, and the effects of SSI on the dynamic response are discussed.


Sign in / Sign up

Export Citation Format

Share Document