scholarly journals EFFECTS OF INITIAL DEFLECTION ON FATIGUE CRACKS DUE TO OUT-OF-PLANE DEFORMATION OF THIN PLATE

1983 ◽  
Vol 1983 (329) ◽  
pp. 1-11
Author(s):  
Yukio MAEDA ◽  
Ichiro OKURA
Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 141 ◽  
Author(s):  
Hui Huang ◽  
Xianqing Yin ◽  
Zhili Feng ◽  
Ninshu Ma

Transient distortion of thin plate in the welding process usually has a complicated mode and large magnitude. Quantitative measurement and prediction of full-field distortion are challenging and rarely reported up to now. In this study, the out-of-plane distortion of a thin plate during the Tungsten Inert Gas (TIG) welding process was measured using the digital image correlation (DIC) method. A simulation model based on thermal elastic–plastic finite element method (FEM) and DIC measured geometric imperfection were developed for accurate prediction of the transient welding distortion. The numerical results and experimental data agreed very well in both out-of-plane deformation modes and magnitudes of the plate at different stages of welding. The maximum out-of-plane distortion was larger than 4 mm during welding which can cause instability of arc length and heat input. The distance change between welding torch and plate surface was investigated under different initial deflections of the plate before welding. The plate with flat geometry shows the minimum transient and final gap change. In addition, the relationship between heat input and welding distortion was clarified through a series of numerical analyses. Optimization of welding heat input can be performed based on numerical results to avoid excessive welding distortion.


2014 ◽  
Vol 80 (811) ◽  
pp. DSM0054-DSM0054 ◽  
Author(s):  
Hitoshi HORIO ◽  
Nozomu KOGISO ◽  
Masaki OTOMORI ◽  
Takayuki YAMADA ◽  
Shinji NISHIWAKI

2014 ◽  
Vol 2014.24 (0) ◽  
pp. _3302-1_-_3302-9_
Author(s):  
Yoshiaki NAKAZAWA ◽  
Nozomu KOGISO ◽  
Takayuki YAMADA ◽  
Shinji NISHIWAKI

2021 ◽  
pp. 004051752110134
Author(s):  
Cerise A Edwards ◽  
Stephen L Ogin ◽  
David A Jesson ◽  
Matthew Oldfield ◽  
Rebecca L Livesey ◽  
...  

Military personnel use protective armor systems that are frequently exposed to low-level damage, such as non-ballistic impact, wear-and-tear from everyday use, and damage during storage of equipment. The extent to which such low-level pre-damage could affect the performance of an armor system is unknown. In this work, low-level pre-damage has been introduced into a Kevlar/phenolic resin-starved composite panel using tensile loading. The tensile stress–strain behavior of this eight-layer material has been investigated and has been found to have two distinct regions; these have been understood in terms of the microstructure and damage within the composite panels investigated using micro-computed tomography and digital image correlation. Ballistic testing carried out on pristine (control) and pre-damaged panels did not indicate any difference in the V50 ballistic performance. However, an indication of a difference in response to ballistic impact was observed; the area of maximal local out-of-plane deformation for the pre-damaged panels was found to be twice that of the control panels, and the global out-of-plane deformation across the panel was also larger.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Shuangle Wu ◽  
Fangyuan Sun ◽  
Haotian Xie ◽  
Qihan Zhao ◽  
Peizheng Yan ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1313-1316
Author(s):  
Yu Ji Chen

In order to study the buckling mechanics behaviour of the out-of-plane stability of arches with the double symmetry axis section, by mean of potential variational theories, considering the out-of-plane deformation of arches, the out-of-plane stability governing equation of arches was obtained. The problem was solved by the spline function allocating point method. An example was calculated with this paper method. It is shown by comparing the result of this paper with the others that the paper method is reliable and accurate.


Sign in / Sign up

Export Citation Format

Share Document