Estimation of wind and solar energy potential considering future land use change in the world

Author(s):  
Yuto KUWABA ◽  
Tomoko HASEGAWA ◽  
Shinichiro FUJIMORI ◽  
Diego SILVA HERRAN
2017 ◽  
Vol 8 (4) ◽  
pp. 189-197
Author(s):  
Christiane Cavalcante Leite ◽  
Marcos Heil Costa ◽  
Ranieri Carlos Ferreira de Amorim

The evaluation of the impacts of land-use change on the water resources has been, many times, limited by the knowledge of past land use conditions. Most publications on this field present only a vague description of the past land use, which is usually insufficient for more comprehensive studies. This study presents the first reconstruction of the historical land use patterns in Amazonia, that includes both croplands and pasturelands, for the period 1940-1995. During this period, Amazonia experienced the fastest rates of land use change in the world, growing 4-fold from 193,269 km2 in 1940 to 724,899 km2 in 1995. This reconstruction is based on a merging of satellite imagery and census data, and provides a 5'x5' yearly dataset of land use in three different categories (cropland, natural pastureland and planted pastureland) for Amazonia. This dataset will be an important step towards understanding the impacts of changes in land use on the water resources in Amazonia.


Energy Policy ◽  
2011 ◽  
Vol 39 (12) ◽  
pp. 7988-8002 ◽  
Author(s):  
Cheng-Dar Yue ◽  
Guo-Rong Huang

Author(s):  
Dipti Bakare

Abstract: Urbanization may be a process having a serious impact ashore use characteristics. Basically, as an impression of urbanization, the world is observed with rapid change within the land use character of agricultural land. Generally, the agricultural land is employed for various development activities like industrial establishments, residential colonies and other urban infrastructure during the method of urbanization. it's necessary to possess a periodical assessment of land use change for the developing populated area , which helps to make a decision the longer term expansion strategies for the world. Nashik city is located in the state of Maharashtra in the western part of India. It is one of the most dynamic cities of India with a rapid growth rate due to migration from various parts of Maharashtra. The Nashik city is presently spread over an area of 264.15 sq. km. with a periodical increase in municipal corporation boundary during the last few decades. As a result of urbanization and expansion of municipal corporation limits, the city has undergone drastic changes in land use character. In this study, land-use change is quantified for the existing six zones of Nashik city during the last 30 years using remote sensing and GIS. The study has analysed the relationship between urban expansion and the loss of agricultural land because of an increase in a built-up area and other land use. The study present excellent scenario for land use change during the year 1991, 2001, 2011 and 2020. This can surely guide the development strategies for the study area of Nashik. Also the study can be extended for conducting a suitability analysis to assess future change of land use based on various criteria. Keywords: Land use, Remote sensing, GIS, Supervised classification, Urbanization, Agricultural land loss


2018 ◽  
Vol 7 (3) ◽  
pp. 1664 ◽  
Author(s):  
Saad S. Alrwashdeh ◽  
Falah M. Alsaraireh ◽  
Mohammad A. Saraireh

The solar energy potential in Jordan is enormous as it lies within the solar belt of the world with average solar radiation between 4 and 8 KWh/m2, which implies a potential of 1400-2300 GWh per year annually. Electricity demand in Jordan plays a significant role in the high amount of energy consumption to cover the needs of heating, cooling, lighting, etc. For that, the availability of the solar radiation infor-mation becomes essential to help in the design and building of the solar energy application. In this study, a solar radiation map is provided of all Jordan governorates. 


2015 ◽  
Vol 15 (19) ◽  
pp. 26895-26957 ◽  
Author(s):  
J. B. Cohen ◽  
E. Lecoeur

Abstract. A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land use change and fires in this region of the world. First, we find that fires occur annually, but with a considerable amount of variance in their onset, duration, and intensity from year to year, and from two separate regions within Southeast Asia from each other. This variability is already partially understood from previous works, including the impacts of both inter-annually and intra-annually occurring influences such as the Monsoon and El-Nino events, but yet there are other as of yet unknown influences that also are found to strongly influence the results. Second, we show that a simple regression-model of the land-cover, fire, and precipitation data can be used to recreate a robust representation of the timing and magnitude of measured AOD from multiple measurements sources of this region using either 8-day (better for onset and duration) or monthly based (better for magnitude) measurements, but not daily measurements. We find that the reconstructed AOD matches the timing and intensity from AERONET measurements to within 70 to 90 % and the timing and intensity of MISR measurements from to within 50 to 95 %. This is a unique finding in this part of the world, since could-covered regions are large, yet the robustness of the model is still capable of holding over many of these regions, where otherwise no fires are observed and hence no emissions source contribution to AOD would otherwise be thought to occur. Third, we determine that while Southeast Asia is a source region of such intense smoke emissions, that it is also impacted by transport of smoke from other regions as well. There are regions in northern Southeast Asia which have two annual AOD peaks, one during the local fire season, and the second smaller peak corresponding to a combination of some local smoke sources as well as transport of aerosols from fires in southern Southeast Asia, and possibly even from anthropogenic sources in South Asia. Conversely, we show that southern Southeast Asia is affected exclusively by its own local fire sources during its own local fire season. Overall, this study highlights the importance of taking into account a simultaneous use of land-use, fire, and precipitation for understanding the impacts of fires on the atmospheric loading and distribution of aerosols in Southeast Asia over both space and time.


Author(s):  
Victor Udemeue Onyebueke

Football is arguably the world’s most globalized sport, and is implicated in the continuing efforts of social scientists to understand current globalization processes. In cities across the world, transnational broadcast of live matches of European leagues, involving elite clubs like Manchester United, Chelsea, Barcelona and other elite teams/players, is engendering ritualized television spectating, which in turn is leading to the proliferation of ‘football bars’ or football viewing centres (FVCs). Globalization-induced telemediation of urban social life and subculture formation is specialized in these ‘virtual stadiums’, entertainment/socializing centres, and ‘windows’ to the outside world, where fan-ship behaviours are both formed and reinforced. The current article attempts to fill the yawning spatiality gap in contemporary literature on football globalization and media transnationalism by exploring FVCs as ‘spatial coordinates’ of globalization, and unpacking its geospatial, socio-demographic and land use change attributes in a typical Nigerian city. The explorative results revealed significant clustering around the central areas with orientation in the direction of the major transportation corridors.


2017 ◽  
Vol 17 (1) ◽  
pp. 721-743 ◽  
Author(s):  
Jason Blake Cohen ◽  
Eve Lecoeur ◽  
Daniel Hui Loong Ng

Abstract. A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land-use change and fires in this region of the world. First, we find that fires occur annually, but with a considerable amount of variance in their onset, duration, and intensity from year to year, and from two separate regions within Southeast Asia. Second, we show that a simple regression model of the land-cover, fire, and precipitation data can be used to recreate a robust representation of the timing and magnitude of measured aerosol optical depth (AOD) from multiple measurements sources of this region using either 8-day (better for onset and duration) or monthly (better for magnitude) measurements, but not daily measurements. We find that the reconstructed AOD matches the timing and intensity from AERONET measurements to within 70 to 90 % and the timing and intensity of MISR measurements to within 50 to 95 %. This is a unique finding in this part of the world since cloud-covered regions are large, yet the model is still robustly capable, including over regions where no fires are observed and hence no emissions would be expected to contribute to AOD. Third, we determine that while Southeast Asia is a source region of such intense smoke emissions, portions of it are also impacted by smoke transported from other regions. There are regions in northern Southeast Asia which have two annual AOD peaks, one during the local fire season and the other, smaller peak corresponding to a combination of some local smoke sources as well as transport of aerosols from fires in southern Southeast Asia and possibly even from anthropogenic sources in South Asia. Overall, this study highlights the importance of taking into account a simultaneous use of land-use, fire, and precipitation for understanding the impacts of fires on the atmospheric loading and distribution of aerosols in Southeast Asia over both space and time. Furthermore, it highlights that there are significant advantages of using 8-day and monthly average values (instead of daily data) in order to better quantify the magnitude and timing of Southeast Asia fires.


Sign in / Sign up

Export Citation Format

Share Document