shear stress level
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Dong Han ◽  
Jiafeng Zhang ◽  
Bartley Griffith ◽  
Zhongjun Wu

Abstract Shear-induced platelet activation is one of the critical outcomes when blood is exposed to elevated shear stress. Excessively activated platelets in the circulation can lead to thrombus formation and platelet consumption, resulting in serious adverse events such as thromboembolism and bleeding. While experimental observations reveal that it is related to the shear stress level and exposure time, the underlying mechanism of shear-induced platelet activation is not fully understood. Various models have been proposed to relate shear stress levels to platelet activation, yet most are modified from the empirically calibrated power-law model. Newly developed multiscale platelet models are tested as a promising approach to capture a single platelet's dynamic shape during activation, but it would be computationally expensive to employ it for a large-scale analysis. This paper summarizes the current numerical models used to study the shear-induced platelet activation and their computational applications in the risk assessment of a particular flow pattern and clot formation prediction.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2542
Author(s):  
Junxiu Lv ◽  
Xiaoyuan Zhang

This study mainly investigates the prediction models of shear parameters and dynamic creep instability for asphalt mixture under different high temperatures to reveal the instability mechanism of the rutting for asphalt pavement. Cohesive force c and internal friction angle φ in the shear strength parameters for asphalt mixture were obtained by the triaxial compressive strength test. Then, through analyzing the influence of different temperatures on parameters c and φ, the prediction models of shear strength parameters related to temperature were developed. Meanwhile, the corresponding forecast model related to confining pressure and shear strength parameters was obtained by simplifying the calculation method of shear stress level on the failure surface under cyclic loading. Thus, the relationship of shear stress level with temperature was established. Furthermore, the cyclic time FN of dynamic creep instability at 60 °C was obtained by the triaxial dynamic creep test, and the effects of confining pressure and shear stress level were considered. Results showed that FN decreases exponentially with the increase in stress levels under the same confining pressure and increases with the increase in confining pressure. The ratio between shear stress level and corresponding shear strength under the same confining pressure was introduced; thus, the relationship curve of FN with shear stress level can eliminate the effect of different confining pressures. The instability prediction model of FN for asphalt mixture was established using exponential model fitting analysis, and the rationality of the model was verified. Finally, the change rule of the parameters in the instability prediction model was investigated by further changing the temperature, and the instability forecast model in the range of high temperature for the same gradation mixture was established by the interpolation calculation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amy Engelbrecht-Wiggans ◽  
Stuart Leigh Phoenix

Stress rupture (sometimes called creep-rupture) is a time-dependent failure mode occurring in unidirectional fiber composites under high tensile loads sustained over long times (e. g., many years), resulting in highly variable lifetimes and where failure has catastrophic consequences. Stress-rupture is of particular concern in such structures as composite overwrapped pressure vessels (COPVs), tension members in infrastructure applications (suspended roofs, post-tensioned bridge cables) and high angular velocity rotors (e.g., flywheels, centrifuges, and propellers). At the micromechanical level, stress rupture begins with the failure of some individual fibers at random flaws, followed by local load-transfer to neighboring intact fibers through shear stresses in the matrix. Over time, the matrix between the fibers creeps in shear, which causes lengthening of local fiber overload zones around previous fiber breaks, resulting in even more fiber breaks, and eventually, formation clusters of fiber breaks of various sizes, one of which eventually grows to a catastrophically unstable size. Most previous models are direct extension of classic stochastic breakdown models for a single fiber, and do not reflect the micromechanical detail, particularly in terms of the creep behavior of the matrix. These models may be adequate for interpreting experimental, composite stress rupture data under a constant load in service; however, they are of highly questionable accuracy under more complex loading profiles, especially ones that initially include a brief “proof test” at a “proof load” of up to 1.5 times the chosen service load. Such models typically predict an improved reliability for proof-test survivors that is higher than the reliability without such a proof test. In our previous work relevant to carbon fiber/epoxy composite structures we showed that damage occurs in the form of a large number of fiber breaks that would not otherwise occur, and in many important circumstances the net effect is reduced reliability over time, if the proof stress is too high. The current paper continues our previous work by revising the model for matrix creep to include non-linear creep whereby power-law creep behavior occurs not only in time but also in shear stress level and with differing exponents. This model, thus, admits two additional parameters, one determining the sensitivity of shear creep rate to shear stress level, and another that acts as a threshold shear stress level reminiscent of a yield stress in the plastic limit, which the model also admits. The new model predicts very similar behavior to that seen in the previous model under linear viscoelastic behavior of the matrix, except that it allows for a threshold shear stress. This threshold allows consideration of behavior under near plastic matrix yielding or even matrix shear failure, the consequence of which is a large increase in the length-scale of load transfer around fiber breaks, and thus, a significant reduction in composite strength and increase in variability. Derivations of length-scales resulting from non-linear matrix creep are provided as Appendices in the Supplementary Material.


ASAIO Journal ◽  
2018 ◽  
Vol 64 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Choon-Sik Jhun ◽  
Megan A. Stauffer ◽  
John D. Reibson ◽  
Eric E. Yeager ◽  
Raymond K. Newswanger ◽  
...  

2012 ◽  
Vol 12 (03) ◽  
pp. 1250045 ◽  
Author(s):  
JIAXING QI ◽  
YANHONG ZHOU ◽  
DONGFANG WANG ◽  
LIANG ZHONG

Computational fluid dynamics (CFD) simulations of the flow in an axial blood pump with different blade heights (BH150, BH200 and BH250) were performed in the present study. The flow in the pump was assumed as steady and turbulent, and blood was treated as incompressible and Newtonian fluid. The flow rate increased with the rise in blade heights. At the impeller rotating speed of 20,000 rpm and a pressure of 100 mm Hg, the pump produces a flow rate up to 5 L/min in BH200 and BH250 models. The reverse flow and vortices have been identified in the BH150 and BH200 models in the outlet regions, but not for BH250 model. The high shear stress of the flow in the pump mainly occurred at the blade tips. The BH200 model achieved an expected flow rate up to 5 L/min with 90% of the shear stresses less than 500 Pa and the exposure time less than 22 ms, which has the acceptable shear stress level in the literature.


Author(s):  
Shailesh Ganpule ◽  
Linxia Gu ◽  
Guoxin Cao ◽  
Namas Chandra

When a pressure wave of finite amplitude is generated in air by a rapid release of energy, such as high-pressure gas storage vessel or the blast from dynamite, there may be undetected brain injuries even though protective armors prevent the penetration of the projectile. To study brain tissue injury and design a better personnel head armor under blast wave, computational models of human head have been developed. Models with and without helmet are built to quantify the intracranial pressure and shear stresses of head subjected to blast wave. All the models are compared against injury thresholds for intracranial pressure and shear stresses. Overall pressure and shear stress level is highest in model without helmet and lowest in model with helmet having foam layer on inner side of helmet. The results show that helmet reduces the pressure and shear stresses generated in the brain. However this reduction in pressure and shear stresses might not be sufficient to mitigate early time, blast induced, traumatic brain injury. The validated results will provide better understanding of the energy transfer characteristics of blast wave through helmet and the injury mechanism of human head.


Author(s):  
Liang-Der Jou ◽  
Brad Dispensa ◽  
David Saloner ◽  
William L. Young

Modifying aneurysm hemodynamics may reduce the likelihood of aneurysm rupture. In this study, hemodynamics in a growing aneurysm and a thrombus-developing basilar aneurysm is studied. The locations of thrombus and growth were identified by co-registering MR images of aneurysms at two different times. The thrombus (~6mm) appeared at the superior side of the aneurysm, where the flow impinged on the wall, and aneurysm growth (~3mm) was found at the inferior side (lower part) of the aneurysm. The wall shear stress was calculated from flow simulations. The location of growth has a very low wall shear stress (< 0.01N/m2). The change of hemodynamics during thrombus development was not significant, but the thickest thrombus was shown to have a wall shear stress level between 0.2 and 1N/m2.


Sign in / Sign up

Export Citation Format

Share Document