ESTIMATION OF GROUND ANCHOR RESIDUAL TENSION BY VIBRATION METHOD

Author(s):  
Hideki SAITO ◽  
Mitsuru YAMAZAKI ◽  
Atsushi YASHIMA ◽  
Kazuki NAWA ◽  
Kunio AOIKE ◽  
...  
Author(s):  
Kazuki Nawa ◽  
Atsushi Yashima ◽  
Yoshinobu Murata ◽  
Keizo Kariya ◽  
Hideki Saito ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Ma ◽  
Shinji Nakata ◽  
Akihito Yoshida ◽  
Yukio Tamura

Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete) external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.


Author(s):  
Kaixing Hong ◽  
Hai Huang

In this paper, a condition assessment model using vibration method is presented to diagnose winding structure conditions. The principle of the model is based on the vibration correlation. In the model, the fundamental frequency vibration analysis is used to separate the winding vibration from the tank vibration. Then, a health parameter is proposed through the vibration correlation analysis. During the laboratory tests, the model is validated on a test transformer, and manmade deformations are provoked in a special winding to compare the vibrations under different conditions. The results show that the proposed model has the ability to assess winding conditions.


2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


2015 ◽  
Vol 67 (5) ◽  
pp. 235-246 ◽  
Author(s):  
Sun-Jong Park ◽  
Gang-Kyu Park ◽  
Hong Jae Yim ◽  
Hyo-Gyoung Kwak

Sign in / Sign up

Export Citation Format

Share Document