scholarly journals SIMULATION OF INTERANNUAL VARIABILITY OF SNOW COVER AT VALDAI (RUSSIA) USING A DISTRIBUTED BIOSPHERE HYDROLOGICAL MODEL WITH IMPROVED SNOW PHYSICS

Author(s):  
Maheswor SHRESTHA ◽  
Lei WANG ◽  
Toshio KOIKE
2010 ◽  
Vol 7 (3) ◽  
pp. 3481-3519 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.


2021 ◽  
Vol 2 ◽  
pp. 95-110
Author(s):  
A.D., Kryuchkov ◽  
◽  
N.A Kalinin ◽  

Comparison of snow cover characteristics according to weather stations and ERA 5-Land reanalysis in the Perm region / Kryuchkov A.D., Kalinin N.A. // Hydrometeorological Research and Forecasting, 2021, no. 2 (380), pp. 95-110. The consistency of information on the snow depth contained in the ERA 5-Land reanalysis with data of weather stations of the Perm region is analyzed. The study is performed for the period from October 1990 to May 2020. It is shown that the interannual variability of the snow cover is generally successfully reflected by the current version of the reanalysis. Data on the snow availability are more accurately reproduced during the period of formation of the snow cover than during its melt. The performed calculations demonstrate a systematic overestimation of the snow depth in the ERA 5-Land reanalysis relative to the actual observations and a predominantly meridional error distribution on the territory of the Perm region. The maximum values in the seasonal variability of the snow cover occur earlier in the reanalysis than in the actual observations. Keywords: snow cover, reanalysis, weather stations, seasonal variability, interannual variability


2011 ◽  
Vol 11 (6) ◽  
pp. 1769-1785 ◽  
Author(s):  
B. Groppelli ◽  
A. Soncini ◽  
D. Bocchiola ◽  
R. Rosso

Abstract. We investigate future (2045–2054) hydrological cycle of the snow fed Oglio (≈1800 km2) Alpine watershed in Northern Italy. A Stochastic Space Random Cascade (SSRC) approach is used to downscale future precipitation from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base and chosen for this purpose based upon previous studies. We then downscale temperature output from the GCMs to obtain temperature fields for the area. We also consider a projected scenario based upon trends locally observed in former studies, LOC scenario. Then, we feed the downscaled fields to a minimal hydrological model to build future hydrological scenarios. We provide projected flow duration curves and selected flow descriptors, giving indication of expected modified (against control run for 1990–1999) regime of low flows and droughts and flood hazard, and thus evaluate modified peak floods regime through indexed flood. We then assess the degree of uncertainty, or spread, of the projected water resources scenarios by feeding the hydrological model with ensembles projections consistent with our deterministic (GCMs + LOC) scenarios, and we evaluate the significance of the projected flow variables against those observed in the control run. The climate scenarios from the adopted GCMs differ greatly from one another with respect to projected precipitation amount and temperature regimes, and so do the projected hydrological scenarios. A relatively good agreement is found upon prospective shrinkage and shorter duration of the seasonal snow cover due to increased temperature patterns, and upon prospective increase of hydrological losses, i.e. evapotranspiration, for the same reason. However, precipitation patterns are less consistent, because HadCM3 and PCM models project noticeably increased precipitation for 2045–2054, whereas CCSM3 provides decreased precipitation patterns therein. The LOC scenario instead displays unchanged precipitation. The ensemble simulations indicate that several projected flow variables under the considered scenarios are significantly different from their control run counterparts, and also that snow cover seems to significantly decrease in duration and depth. The proposed hydrological scenarios eventually provide a what-if analysis, giving a broad view of the possible expected impacts of climate change within the Italian Alps, necessary to trigger the discussion about future adaptation strategies.


2014 ◽  
Vol 18 (6) ◽  
pp. 2265-2285 ◽  
Author(s):  
O. Rössler ◽  
P. Froidevaux ◽  
U. Börst ◽  
R. Rickli ◽  
O. Martius ◽  
...  

Abstract. A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.


2010 ◽  
Vol 14 (12) ◽  
pp. 2577-2594 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. In this study, the snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is significantly improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics is hereafter termed WEB-DHM-S. Since the in-situ observations of spatially-distributed snow variables with high resolution are currently not available over large regions, the new distributed system (WEB-DHM-S) is at first rigorously tested with comprehensive point measurements. The stations used for evaluation comprise the four open sites of the Snow Model Intercomparison Project (SnowMIP) phase 1 with different climate characteristics (Col de Porte in France, Weissfluhjoch in Switzerland, Goose Bay in Canada and Sleepers River in USA) and one open/forest site of the SnowMIP phase 2 (Hitsujigaoka in Japan). The comparisons of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff at the SnowMIP1 sites reveal that WEB-DHM-S, in general, is capable of simulating the internal snow process better than the original WEB-DHM. Sensitivity tests (through incremental addition of model processes) are performed to illustrate the necessity of improvements over WEB-DHM and indicate that both the 3-layer snow module and the new albedo scheme are essential. The canopy effects on snow processes are studied at the Hitsujigaoka site of the SnowMIP2 showing that the snow holding capacity of the canopy plays a vital role in simulating the snow depth on ground. Through these point evaluations and sensitivity studies, WEB-DHM-S has demonstrated the potential to address basin-scale snow processes (e.g., the snowmelt runoff), since it inherits the distributed hydrological framework from the WEB-DHM (e.g., the slope-driven runoff generation with a grid-hillslope scheme, and the flow routing in the river network).


2013 ◽  
Vol 62 (1) ◽  
pp. 26 ◽  
Author(s):  
R Zdorovennov ◽  
N Palshin ◽  
G Zdorovennova ◽  
T Efremova ◽  
A Terzhevik

Sign in / Sign up

Export Citation Format

Share Document