scholarly journals Study on evaluation method of environmental impact on the phase of recycle for life cycle assessment.

1994 ◽  
Vol 22 ◽  
pp. 141-146 ◽  
Author(s):  
Yasuhiko WADA ◽  
Hiroyuki MIURA ◽  
Akihisa HIRATA
2021 ◽  
Vol 299 ◽  
pp. 02006
Author(s):  
Siyi Wang ◽  
Zixiang Ji ◽  
Yumin Wang

Decentralized wastewater treatment technology, especially natural ecological treatment technology has widely been used in rural regions. In this paper, a comprehensive life cycle assessment (LCA) of a typical wastewater ecological treatment technology - artificial wetland technology was conducted. SimaPro software was applied to simulate the wastewater treatment facility, and the CML2 baseline2000 impact evaluation method was selected to analyze the environmental loads and benefits during the life cycle. The environmental impact of the facility adopting grey-black separation mode is compared with that of the unified collection and treatment model to provide scientific basis and suggestions for the selection of wastewater collection and treatment model. The results indicated that the main environmental impact of the Southeast University artificial wetland system comes from the construction and operation of the artificial wetland and aeration tank. Marine water ecotoxicity is the main impact factor, followed by freshwater water ecotoxicity.


2018 ◽  
Vol 10 (9) ◽  
pp. 3096 ◽  
Author(s):  
Edwin Zea Escamilla ◽  
Guillaume Habert ◽  
Juan Correal Daza ◽  
Hector Archilla ◽  
Juan Echeverry Fernández ◽  
...  

The past five decades have witnessed an unprecedented growth in population. This has led to an ever-growing housing demand. It has been proposed that the use of bio-based materials, and specifically bamboo, can help alleviate the housing demand in a sustainable manner. The present paper aims to assess the environmental impact caused by using four different construction materials (bamboo, brick, concrete hollow block, and engineered bamboo) in buildings. A comparative life cycle assessment (LCA) was carried out to measure the environmental impact of the different construction materials in the construction of single and multi-storey buildings. The LCA considered the extraction, production, transport, and use of the construction materials. The IPCC2013 evaluation method from the Intergovernmental Panel on Climate Change IPCC2013 was used for the calculations of CO2 emissions. The assessment was geographically located in Colombia, South America, and estimates the transport distances of the construction materials. The results show that transportation and reinforcing materials significantly contribute to the environmental impact, whereas the engineered bamboo construction system has the lowest environmental impact. The adoption of bamboo-based construction systems has a significant potential to support the regenerative development of regions where they could be used and might lead to long-lasting improvements to economies, environments, and livelihoods.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


2019 ◽  
Vol 236 ◽  
pp. 117638
Author(s):  
Alessio Ilari ◽  
Daniele Duca ◽  
Giuseppe Toscano ◽  
Ester Foppa Pedretti

2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


Sign in / Sign up

Export Citation Format

Share Document